• Title/Summary/Keyword: Collision avoidance information

Search Result 337, Processing Time 0.032 seconds

Anticipatory Packet Collision Avoidance Algorithm among WiFi and ZigBee Networks for Port Logistics Applications (항만물류 응용에서의 WiFI와 Zigbee 망간 선제적 패킷 충동 회피 알고리즘)

  • Choo, Young-Yeol;Jung, Da-Un
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1939-1946
    • /
    • 2012
  • USNs (Ubiquitous Sensor Networks) such as IEEE 802.15.4 ZigBee network share ISM (Industrial, Scientific, and Medical) frequency band with WiFi networks. Once both networks operate in a region, packet collision may happen because of frequency overlapping. To assure this possibility, we conducted experiments where WiFi and ZigBee communication networks had been installed in an area. As a result of the test, successful data transmission rate were reduced due to the frequency overlapping between a WiFi communication channel and a ZigBee communication band. To cope with this problem, we propose a collision avoidance algorithm. In the proposed algorithm, if frequency collision is sensed, new communication channel with different frequency band is allocated to each node. Performance of the proposed frequency collision avoidance algorithm was tested and the results were described.

Architecture of Collision Avoidance System between Bicycle and Moving Object by Using V2V(X) Network (V2V(X) 네트워크를 이용한 자전거와 이동 객체간 충돌 회피 시스템 구조)

  • Gu, Bon-gen
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • Bicycle shares road with various traffic elements like car, pedestrian and, the number of bicycle user is increasing in recent. Therefore, bicycle accident continuously increases. Especially in complex traffic environment, bicycle accident which collides with moving object such as pedestrian occupies many parts of bicycle accident in the reason that the cyclist does not recognize moving object. In this paper, to reduce or avoid the bicycle accident, we propose the architecture of bicycle collision avoidance system in which that cyclist can get the information about moving object by connecting bicycle to network of vehicles and does some action for avoiding collision. In our architecture, when traffic element such as car recognizes moving object, it decides the moving direction of object, and transfers information about moving direction via vehicles network. Bicycle collision avoidance system from our proposed architecture receives this information, and alerts to cyclist when the moving object influences the safety of bicycle.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

Object-aware Depth Estimation for Developing Collision Avoidance System (객체 영역에 특화된 뎁스 추정 기반의 충돌방지 기술개발)

  • Gyutae Hwang;Jimin Song;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • Collision avoidance system is important to improve the robustness and functional safety of autonomous vehicles. This paper proposes an object-level distance estimation method to develop a collision avoidance system, and it is applied to golfcarts utilized in country club environments. To improve the detection accuracy, we continually trained an object detection model based on pseudo labels generated by a pre-trained detector. Moreover, we propose object-aware depth estimation (OADE) method which trains a depth model focusing on object regions. In the OADE algorithm, we generated dense depth information for object regions by utilizing detection results and sparse LiDAR points, and it is referred to as object-aware LiDAR projection (OALP). By using the OALP maps, a depth estimation model was trained by backpropagating more gradients of the loss on object regions. Experiments were conducted on our custom dataset, which was collected for the travel distance of 22 km on 54 holes in three country clubs under various weather conditions. The precision and recall rate were respectively improved from 70.5% and 49.1% to 95.3% and 92.1% after the continual learning with pseudo labels. Moreover, the OADE algorithm reduces the absolute relative error from 4.76% to 4.27% for estimating distances to obstacles.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle (무인자율차량의 실시간 충돌 회피 알고리즘 개발)

  • Choe, Tok-Son
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

Multiple Target Tracking and Forward Velocity Control for Collision Avoidance of Autonomous Mobile Robot (실외 자율주행 로봇을 위한 다수의 동적 장애물 탐지 및 선속도 기반 장애물 회피기법 개발)

  • Kim, Sun-Do;Roh, Chi-Won;Kang, Yeon-Sik;Kang, Sung-Chul;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.635-641
    • /
    • 2008
  • In this paper, we used a laser range finder (LRF) to detect both the static and dynamic obstacles for the safe navigation of a mobile robot. LRF sensor measurements containing the information of obstacle's geometry are first processed to extract the characteristic points of the obstacle in the sensor field of view. Then the dynamic states of the characteristic points are approximated using kinematic model, which are tracked by associating the measurements with Probability Data Association Filter. Finally, the collision avoidance algorithm is developed by using fuzzy decision making algorithm depending on the states of the obstacles tracked by the proposed obstacle tracking algorithm. The performance of the proposed algorithm is evaluated through experiments with the experimental mobile robot.

Development of Collision Avoidance Supporting System based on ECDIS (전자해도표시시스템 기반의 충돌회피 지원 시스템 개발)

  • Kim, Da-Jung;Ahn, Kyoungsoo;Lee, Tae-Il;Kim, Young Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.167-170
    • /
    • 2013
  • The objective of this paper is to describe the result of development of collision avoidance supporting system, based on the electronic chart display and information system(ECDIS). In real ship operations, collision accidents happen frequently due to human errors such as the lax vigilance, misinterpretation of international regulations for preventing collisions at sea (COLREGs). We developed a system which will help to avoid these kind of accidents. This system can automatically recognize the risk of collisions, generate the safe alternative routes that comply with COLREGs, and then deliver the results into auto pilot. A virtual simulation assuming progressive collision situations revealed the usefulness of this system.

  • PDF

A Study on Collision Avoidance and Priority Control Scheme for Cells in Frames

  • Park, Chun-Kwan;Jeon, Byung-Chun
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.114-121
    • /
    • 1998
  • This paper proposed a collision avoidance scheme to improve the network performance and priority control scheme to support real-time ATM applications in CIF(Cells in Frames), which carries ATM cells over existing Ethernet interfaces. The proposed scheme has optimized for the two nodes Ethernet, that is a typical CIF network, and doesn't require any hardware modification of existing Ethernet interface card. The collision avoidance scheme gives fair access opprtunities with minimized contention to the nodes by assigning different inter-frame gap to each element of CIF network. The priority control scheme guarantees preemptive transmission of real-time frames to the medium by exchanging queuing status information between two nodes. Therefore in this paper it is shown that CIF network which has both the collision avoidance scheme of MAC layer and the priority control scheme of CIF layer has a improved network performance and supports real-time ATM applications efficiently.

  • PDF

A Same-Priority Collision-Avoidance Algorithm Using RTS/CTS Frame in IEEE 802.11e EDCA under Network Congested Condition (IEEE 802.11e EDCA 네트워크 혼잡 환경에서 RTS/CTS 프레임을 이용한 동일 우선순위 충돌 회피 알고리즘)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.425-432
    • /
    • 2014
  • The Enhanced Distributed Channel Access (EDCA) function of IEEE 802.11e standard defines contention window (CW) for different Access Category (AC) limits to support Quality-of-Service (QoS). However, it have been remained the problem that the collision probability of transmission is increasing in congested network. Several different solutions have been proposed but the collision occurs among same priority queue within the same station to compete the channel access. This paper presents an APCA (Advanced Priority Collision Avoidance) algorithm for EDCA that increases the throughput in saturated situation. The proposed algorithm use reserved field's bits of FC(Frame Control) using IEEE 802.11e standard's RTS/CTS (Request to Send / Clear to Send) mechanism to avoid data collision. The simulation results show that the proposed algorithm improves the performance of EDCA in packet loss. Using Jain's fairness index formula, we also prove that the proposed APCA algorithm achieves the better fairness than EDCA method under network congested condition.