• Title/Summary/Keyword: Collision Speed

Search Result 502, Processing Time 0.028 seconds

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.

Experimental Study of Collision Angle Effects on Heat Transfer During Droplet-wall Collision in Film Boiling Regime (막비등 영역에서 액적-벽면 충돌 시 충돌각도가 열전달에 미치는 영향에 관한 실험적 연구)

  • Park, Junseok;Kim, Hyungdae
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • Effects of collision angle on heat transfer characteristics of a liquid droplet impinging on a heated wall above the Leidenfrost point temperature were experimentally investigated. The heated wall and droplet temperatures were $506^{\circ}C$ and $100^{\circ}C$, respectively, and the impact angle varied from $20^{\circ}$ to $90^{\circ}$ while the normal collision velocity was constant at 0.27 m/s. The droplet collision behaviors and the surface temperature distribution were measured using synchronized high-speed video and infrared cameras. The major physical parameters influencing upon droplet-wall collision heat transfer, such as residence time, wall heat flux, effective heat transfer area, heat transfer amount, were analyzed. It was found at the constant normal collision velocity that the residence time, wall heat flux and effective heat transfer area were hardly not changed, resulting in the almost constant heat transfer amount.

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

Derivation of the Standard Design Guidelines for Crashworthiness of the High-Speed EMU (동력분산형 고속전철의 충돌안전도 설계 가이드라인 도출)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.772-779
    • /
    • 2008
  • Through this study, standard design guidelines for the high speed EMU have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. The complete train set will be composed of 2TC-6M with 13 ton axle load, different from KTX with the power car of 17 ton axle load. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for main crushable structures and devices. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulations. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

  • PDF

Development of a Model for the Analysis of Occupant Response subjects in Low-Speed Rear-End Collision (저속 후방 추돌에 따른 승객 거동 현상 해석용 모델 개발)

  • 김희석;김영은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.139-150
    • /
    • 2000
  • Although a number of neck injuries are generated, the data which quantify the kinematic response of the human head and cervical spine in low-speed rear-end automobile collisions is very limited. On this problem, just few in vitro experimental research or some experimental research using dummy on neck injury by rear-end collision was conducted, thus systematic research is requested on full scale injury mechanism. An occupant model for the response of the occupant subject to rear-end collision using commercial dynamics package DADS was developed. Developed model shows more close agreement with the experimental data compared with the MADYMO simulation results for the cases of ${\delta}V=16$ kph in sled test. For the case of ${\delta}V=8$ kph and 33.5 kph with production seat, model also shows its reliable response compared with experimental results using Hybrid III and Hybird III with RID.

  • PDF

A Collision detection from division space for performance improvement of MMORPG game engine (MMORPG 게임엔진의 성능개선을 위한 분할공간에서의 충돌검출)

  • Lee, Sung-Ug
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.567-574
    • /
    • 2003
  • Application field of third dimension graphic is becoming diversification by the fast development of hardware recently. Various theory of details technology necessary to design game such as 3D MMORPG (Massive Multi-play Online Role Flaying Game) that do with third dimension. Cyber city should be absorbed. It is the detection speed that this treatise is necessary in game engine design. 3D MMORPG game engine has much factor that influence to speed as well as rendering processing because it express huge third dimension city´s grate many building and individual fast effectively by real time. This treatise nay get concept about the collision in 3D MMORPG and detection speed elevation of game engine through improved detection method. Space division is need to process fast dynamically wide outside that is 3D MMORPG´s main detection target. 3D is constructed with tree construct individual that need collision using processing geometry dataset that is given through new graph. We may search individual that need in collision detection and improve the collision detection speed as using hierarchical bounding box that use it with detection volume. Octree that will use by division octree is used mainly to express rightly static object but this paper use limited OSP by limited space division structure to use this in dynamic environment. Limited OSP space use limited space with method that divide square to classify typically complicated 3D space´s object. Through this detection, this paper propose follow contents, first, this detection may judge collision detection at early time without doing all polygon´s collision examination. Second, this paper may improve detection efficiency of game engine through and then reduce detection time because detection time of bounding box´s collision detection.

A Study on Characteristics of Passenger Injury for Effective Impact Speed in Vehicles Frontal Collision and Rear-ender (차량 정면충돌 및 추돌시 유효충돌속도에 따른 탑승자 상해특성에 관한 연구)

  • Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.239-247
    • /
    • 2015
  • Recently, various research studies on frontal collision and rear-ender which occur more frequently compared to others are underway as the public interest on them is growing. This study analyzes scientifically the relationship between effective impact speed and injury incidence for vehicle crash accident reconstruction and presents a relevant model formula. Because real vehicle experiments have certain limitations such as possible injuries, this study efforts to collect and analyze as many materials as possible to substitute real vehicle experiments, including data from various collision tests and human experiments. As a result, this study present a threshold in which head-on collisions and rear impacts do not cause injuries under 7 km/h of effective impact speed, and suggests a model formula showing that injury extent is linearly proportional to effective impact speed through collision speed and amount of plastic deformation. In conclusion, a model formula for estimating effective impact speed and injury incidence newly proposed in this study is expected to be used as a minimum standard of judgment in disputes on the injury extent of passenger in head-on collisions and rear impacts. Furthermore its availability in terms of technological analysis in legal arguments is expected to be very high if this study will be enhanced by referring to scientific analyses of various real accidents so as to apply it in various types of collision accidents.

A Derivation of the Standard Design Guideline for Crashworthiness of High Speed Train with Power Cars (동력집중식 고속열차의 충돌안전도 표준설계 가이드라인 도출)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo;Kwon, Tae-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.157-167
    • /
    • 2008
  • Through this study, the standard design guidelines for high speed train with power cars have been derived to meet the crashworthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. A standard high speed train composition was defined as 2PC-2ET-6T with 17ton axle load, similar to KTX-2 for the Honam express line. Using theoretical and numerical analyses, some crashworthy design guidelines were derived in terms of mean crush forces and energy absorptions for major crushable components. The derived design guidelines were evaluated and improved using one dimensional spring-mass dynamic simulation. It is shown from the simulation results that the suggested design guidelines can easily satisfy the domestic crashworthiness requirements.

Collision Simulation for the Coupler System of Rolling Stock (철도 차량의 연결기 시스템의 충돌시뮬레이션)

  • Maeng, Heeyoung;Kim, Jin Seong;Park, Yeong-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.566-572
    • /
    • 2013
  • In this study, a collision simulator for rolling stock that considers the plastic deformation of the car body and the dynamic characteristics of a coupler system was developed using Matlab/Simulink. Normally, a coupler system has functions for both connecting the individual car bodies and absorbing the impact energy. A coupler system is composed of a rubber buffer, hydraulic buffer, and deformation tube elements. The coupler system should protect the car body and prevent damage when the shunt speed is less than 10 km/h, which is the regulation speed based on the safety rule for rolling stock. However, if the shunt speed is greater than 10 km/h, a car body is plastically deformed. Therefore, the modeling of the plastic deformation of a car body should be included in a simulator. This collision simulator can provide the design parameters for a coupler system and car body.

Collision Analysis Based on Electric Vehicle Frame Material (전기자동차 프레임 소재에 따른 충돌해석에 관한 연구)

  • Kim, Do-Kuen;Ko, Dong-Hyeon;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.78-84
    • /
    • 2021
  • Reducing the weight of automobiles is a significant global developmental task. Two materials are used to lighten automobiles: aluminum and CFRP frames. Aluminum is a non-ferrous metal, and CFRP is a composite material. They are lighter and harder than other materials. The two materials were used for the collision analysis. Subsequently, the two cases were compared. Three cases were considered for the collision analysis: head-on collision, partial head-on collision, and side collision at a speed of 60 km/h. The three cases were compared and analyzed considering the materials used to understand the difference between aluminum and CFRP and their collision characteristics.