• Title/Summary/Keyword: Collision Response

Search Result 187, Processing Time 0.031 seconds

Implementation of an Efficient Slotted CSMA/CA Anti-collision Protocol for Active RFID System (능동형 RFID 시스템을 위한 효율적인 Slotted CSMA/CA 충돌방지 프로토콜의 구현)

  • Joo, Jin-Hoon;Chung, Sang-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1013-1022
    • /
    • 2012
  • Tag collection is one of the major concerns in radio frequency identification(RFID) system. All tags in RFID reader's transmission range send response message back to the reader in response to collection request message on the given rf channel. When multiple tags respond simultaneously, tag-collision may occur. Tag-collision problem is one of the most important issues in active RFID performance. To mitigate this problem, frame slotted ALOHA(FSA) anti-collision protocol is widely used in active RFID system. Several studies show that the maximum system efficiency of FSA anti-collision protocol is 36.8%. In this paper, we propose an efficient slotted CSMA/CA protocol to improve tag collection performance. We compare our protocol to the FSA anti-collision protocol. For the experiment, an 433MHz active RFID system is implemented, which is composed of an RFID reader and multiple tags. We evaluated the tag collection performance using one RFID reader and 40 tags in the real test bed. The experimental result shows that proposed protocol improves the tag collection time, round and collision probability by 18%, 37.4% and 77.8%, respectively.

A study on enhanced M-ary QT algorithm using collision bits position in RFID system (RFID 시스템에서 충돌비트 위치를 이용한 M-ary QT 알고리즘 향상에 관한 연구)

  • Kim, Kwan-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.109-117
    • /
    • 2016
  • The most important mission of RFID reader is identify EPC (Electronic Product Code) of RFID tag of products that located within distinguishable range of RFID reader. RFID reader transmits query message to RFID tags through wireless channel and RFID tags send unique EPC to response its query message simultaneously. therefore tag collision occurred frequently. RFID tags collision resolution algorithm required to apply RFID technology to various industries. In this paper, we propose enhanced M-ary algorithm that collision bits location is used by not only RFID reader but also tags. the main feature of the proposed algorithm is that integrate multiple query message of M-ary QT algorithm to the single query message by analyze multiple response messages from tags. the simulation results show that the proposed algorithm give better performance than M-ary QT algorithm in terms of the number of query-response, identification efficiency and communication overhead.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Enhanced Anti-Collision Protocol for Identification Systems: Binary Slotted Query Tree Algorithm

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1092-1097
    • /
    • 2011
  • An anti-collision protocol which tries to minimize the collision probability and identification time is the most important factor in all identification technologies. This paper focuses on methods to improve the efficiency of tag's process in identification systems. Our scheme, Binary Slotted Query Tree (BSQT) algorithm, is a memoryless protocol that identifies an object's ID more efficiently by removing the unnecessary prefixes of the traditional Query Tree (QT) algorithm. With enhanced QT algorithm, the reader will broadcast 1 bit and wait the response from the tags but the difference in this scheme is the reader will listen in 2 slots (slot 1 is for 0 bit Tags and slot 2 is for 1 bit Tags). Base on the responses the reader will decide next broadcasted bit. This will help for the reader to remove some unnecessary broadcasted bits which no tags will response. Numerical and simulation results show that the proposed scheme decreases the tag identification time by reducing the overall number of request.

Collision Characteristics of Arch-Type Submarine Cable Protector - Effect of Material Models (재료모델 변화에 따른 아치형 해저 케이블 보호구조물의 충돌 특성)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.609-616
    • /
    • 2011
  • In the study, we analyzed the collision characteristics of a so-called arch-type submarine cable protector by considering the changes in drop heights of a stock anchor and material models for concrete and steel reinforcing bars. We considered plastic kinematics model and Johnson-Holmquist Concrete model for the concrete and linear elastic model and plastic kinematics model for the reinforcing bars. The drop heights of 2-ton stock anchor were selected as 3, 5, and 8.83m, respectively. ANSYS, a finite element analysis program, was used for the collision analysis. To save computational time, we converted those drop heights into initial velocities by the principle of energy conservation. From the sensitivity of the material models on the drop height changes, it is shown that the collision response of the reinforcing bars is sensitive firstly on the steel models and secondly on the concrete models, while the collision response of the concrete is sensitive only on the concrete models.

Collision Tree Based Anti-collision Algorithm in RFID System (RFID시스템에서 충돌 트리 기반 충돌방지 알고리즘)

  • Seo, Hyun-Gon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.316-327
    • /
    • 2007
  • RFID (Radio Frequency Identification) is one of the most promising air interface technologies in the future for object identification using radio wave. If there are multiple tags within the range of the RFID tag reader, all tags send their tag identifications to the reader at the same time in response to the reader's query. This causes collisions on the reader and no tag is identified. A multi-tag identification problem is a core issue in the RFID. It can be solved by anti-collision algorithm such as slot based ALHOA algorithms and tree based algorithms. This paper, proposes a collision tree based anti-collision algorithm using collision tree in RFID system. It is a memory-less algorithm and is an efficient RFID anti-collision mechanism. The collision tree is a mechanism that can solve multi-tag identification problem. It is created in the process of querying and responding between the reader and tags. If the reader broadcasts K bits of prefix to multiple tags, all tags with the identifications matching the prefix transmit the reader the identifications consisted of k+1 bit to last. According to the simulation result, a proposed collision tree based anti-collision algorithm shows a better performance compared to tree working algorithm and query tree algorithm.

Collision-Free Path Planning for a Redundant Manipulator Based on PRM and Potential Field Methods (PRM과 포텐셜 필드 기법에 기반한 다자유도 머니퓰레이터의 충돌회피 경로계획)

  • Park, Jung-Jun;Kim, Hwi-Su;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • The collision-free path of a manipulator should be regenerated in the real time to achieve collision safety when obstacles or humans come into the workspace of the manipulator. A probabilistic roadmap (PRM) method, one of the popular path planning schemes for a manipulator, can find a collision-free path by connecting the start and goal poses through the roadmap constructed by drawing random nodes in the free configuration space. The path planning method based on the configuration space shows robust performance for static environments which can be converted into the off-line processing. However, since this method spends considerable time on converting dynamic obstacles into the configuration space, it is not appropriate for real-time generation of a collision-free path. On the other hand, the method based on the workspace can provide fast response even for dynamic environments because it does not need the conversion into the configuration space. In this paper, we propose an efficient real-time path planning by combining the PRM and the potential field methods to cope with static and dynamic environments. The PRM can generate a collision-free path and the potential field method can determine the configuration of the manipulator. A series of experiments show that the proposed path planning method can provide robust performance for various obstacles.

Assessing the effect of inherent nonlinearities in the analysis and design of a low-rise base isolated steel building

  • Varnavaa, Varnavas;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.499-526
    • /
    • 2013
  • Seismic isolation is an effective method for the protection of buildings and their contents during strong earthquakes. This research work aims to assess the appropriateness of the linear and nonlinear models that can be used in the analysis of typical low-rise base isolated steel buildings, taking into account the inherent nonlinearities of the isolation system as well as the potential nonlinearities of the superstructure in case of strong ground motions. The accuracy of the linearization of the isolator properties according to Eurocode 8 is evaluated comparatively with the corresponding response that can be obtained through the nonlinear hysteretic Bouc-Wen constitutive model. The suitability of the linearized model in the determination of the size of the required seismic gap is assessed, under various earthquake intensities, considering relevant methods that are provided by building codes. Furthermore, the validity of the common assumption of elastic behavior for the superstructure is explored and the alteration of the structural response due to the inelastic deformations of the superstructure as a consequence of potential collision to the restraining moat wall is studied. The usage of a nonlinear model for the isolation system is found to be necessary in order to achieve a sufficiently accurate assessment of the structural response and a reliable estimation of the required width of the provided seismic gap. Moreover, the simulations reveal that the superstructure's inelasticity should be taken into account, especially if the response of the structure under high magnitude earthquakes is investigated. The consideration of the inelasticity of the superstructure is also recommended in studies of structural collision of seismically isolated structures to the surrounding moat wall, since it affects the response.

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.