• Title/Summary/Keyword: Collision Dynamics

Search Result 178, Processing Time 0.03 seconds

A study on game physics engine focused on real time physics (물리 엔진에 관한 고찰 : 실시간 물리 기술을 중심으로)

  • Ha, You-Jong;Park, Kyoung-Ju
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.43-52
    • /
    • 2009
  • This paper analyzes the four game physics engines in terms of real time techniques. Real time physics is the technology that simplifies the physics-based simulation to apply for the real time applications such as game. Our study includes two commercial physics engines, Havok's Physics SDK and NVIDIA's PhysX SDK, and two open source projects, Open Dynamics Engine and Bullet physics engine. As a result, most of them covers rigid body dynamics and some include either deformable body simulation or fluids simulation, or both. For real time simulation, they adopt the simplified numerical methods, the effective in collision detection/response, and also use the parallel processing hardwares, i.e., multi core CPU, Physics processing unit(PPU), or graphics processing unit(GPU).

  • PDF

A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform (차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구)

  • Song, Moon-Hyung;Shin, Dong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

A Study on the Phase Criteria of Nanoscale Systems (나노스케일 계의 상태기준에 관한 연구)

  • Lim, Min-Jong;Choi, Gyung-Min;Kim, Duck-Jool;Chung, Han-Shik;Jeong, Hyo-Min;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.435-447
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^3{\sim}10^5$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In this molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems.

Modelling of variable coefficient of restitution and its application to impact analysis of dynamic systems (반발계수의 모델링과 동적 시스템의 충돌 분석으로의 적용)

  • Ryu, Hwan-Taek;Choi, Jae-Yeon;Kwon, Young-Hun;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.200-212
    • /
    • 2015
  • In classical dynamics, the coefficient of restitution is one of variables to estimate the amount of impulse. In general, we have considered the coefficient of restitution as a constant value. However, coefficient of restitution (COR) is the function of contact material and colliding velocity. Furthermore, COR is also a function of contact area. Thus, without considering the variable characteristic of COR, the actual motion of an object just after impact is not the same as we expect. A general COR model is proposed in this work and its effectiveness is verified through a cart impact experiment and its result is applied to simulation of a ball impact problem. A three-degree-of-freedom manipulator is employed as a test-bed.

EDISON Co-rotational Plane Beam-Transient anlaysis를 이용한 Energy method방법의 충격량해석 및 타격중심 매개변수 연구

  • Kim, SangHyeok;Lee, SangGu;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.194-203
    • /
    • 2017
  • The center of percussion(COP) is the point of an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. COP is an important concept in the field of vibration and dynamics. In vibration, COP causes reduction of vibration and in dynamics, it brings about maximum speed of an object. Many studies about COP are still in progress. However most of the researches have typically focused on the method of mathematical and numerical anlalysis. In this paper, impact analysis was proved by the mechanical energy method using EDISON co-rotational plane beam transient analysis program. The result expressed in acceleration was the relative magnitude of the impulse, which was the indicator of COP. Then, these results were compared with the reference thesis results for exact consequences. Additionally, parametric study of COP was conducted.

  • PDF

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

Analysis of Airflow Pattern and Particle Dispersion in Enclosed Environment Using Traditional CFD and Lattice Boltzmann Methods

  • Inoguchi, Tomo;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.87-97
    • /
    • 2012
  • The indoor environments in high-rise buildings are generally well enclosed by defined boundary conditions. Here, a numerical simulation method based on the Lattice Boltzmann method (LBM), which aims to model and simulate the turbulent flow accurately in an enclosed environment, and its comparison with traditional computational fluid dynamics (CFD) results, are presented in this paper. CFD has become a powerful tool for predicting and evaluating enclosed airflows with the rapid advance in computer capacity and speed, and various types of CFD turbulence modeling and its application and validation have been reported. The LBM is a relatively new method; it involves solving of the discrete Boltzmann equation to simulate the fluid flow with a collision model instead of solving Navier-Stokes equations. In this study, the LBM-based scheme of flow pattern and particle dispersion analyses are validated using the benchmark test case of two- and three-dimensional and isothermal conditions (IEA/Annex 20 case); the prediction accuracy and advantages are also discussed by comparison with the results of CFD.

A Study on the Silicon Damages and Ultra-Low Energy Boron Ion Implantation using Classical Molecular Dynamics Simulation (고전 분자 동 역학 시뮬레이션을 이용한 실리콘 격자 손상과 극 저 에너지 붕소 이온 주입에 관한 연구)

  • 강정원;강유석;손명식;변기량;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.30-40
    • /
    • 1998
  • We have calculated ultra-low energy silicon-self ion implantations and silicon damages through classical molecular dynamics simulation using empirical potentials. We tested whether the recently developed Environment-Dependent Interatomic Potential(EDIP) was suitable for ultra low energy ion implantation simulation, and found that point defects formation energies were in good agreement with other theoretical calculations, but the calculated vacancy migration energy was overestimated. Most of the damages that are produced by collision cascades are concentrated into amorphous-like pockets. Also, We upgraded MDRANGE code for silicon ion implantation process simulation. We simulated ultra-low energy boron ion implantation, 200eV, 500eV, and 1000eV respectively, and calculated boron profiles with silicon substrate temperature and tilt angle. We investigated that below 1000eV, channeling effect must be considered.

  • PDF

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.