• Title/Summary/Keyword: Collimating mirror

Search Result 8, Processing Time 0.022 seconds

Automatic Alignment of a Collimating Mirror by Using Phase Image Correlatio (위상 이미지 상관기법을 이용한 시준거울의 자동정렬)

  • Kim, Hyun-Suk;Tserendolgor, D.;Kim, Dae-Suk;Lee, Hyung-Chul;Kim, Soo-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • A novel alignment method that can be used for aligning the collimating mirror employed in a monochromator is described. In most of the spectrometer industry, the alignment of optical components such as a focusing mirror, a grating and a collimating mirror has been performed manually so far. In this paper, we use a matchedfilter based image correlation technique for measuring the accurate image position which is used for aligning the collimating mirror. The experimental results show that with the proposed scheme automatic alignment can be completed within 10 seconds.

Optical Simulation Study on the Effect of Reflecting Properties of Reflection Films on the Performances of Collimating Films for the LCD Backlight Applications

  • Lee, Jeong-Ho;Ju, Young-Hyun;Park, Ji-Hee;Lee, Ji-Young;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The dependence of optical performances of collimating films such as prism films and pyramid films on the reflecting properties of reflection films were investigated by using a ray tracing technique. The angular distribution of the luminance and the on-axis luminance gain were obtained by using a simple backlight model composed of a reflection film, a virtual flat light source, and a collimating film. Three kinds of reflecting properties were used, which were a perfect Lambertian reflector, a perfect mirror reflector, and a reflector having both diffuse and specular properties. It was found that the on-axis luminance gain was the highest in the simulation where a mirror reflector was used, while the viewing angle was the widest where the Lambertian reflector was used. This result indicates that it is necessary to optimize the simulation condition such as the reflecting properties in order to predict the optical performances of collimating films accurately. Quantitative correlation between the optical characteristics of collimating films and the reflecting properties of reflection films can be used to improve simulation technique for the development and the optimization of collimating films for LCD backlight applications.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

IGRINS : Collimating Mirror Mount Opto-mechanical Design

  • Rukdee, Surangkhana;Park, Chan;Chun, Moo-Young;Yuk, In-Soo;Lee, Sung-Ho;Lee, Han-Shin;Kim, Kang-Min;Jeong, Hwa-Kyung;Strubhar, Joseph;Jaffe, Daniel T.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.4-31
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

CONSTRUCTION OF THE BOAO ECHELLE SPECTROGRAPH (BOES) (보현산천문대 고분산 에셀분광기(BOES) 제작)

  • KIM KANG-MIN;JANG JEONG GYUN;CHUN MOO-YOUNG;PARK BYEONG-GON;HYUNG SIEK;HAN INWOO;YOON TAE SEOG;VOGT STEVEN S.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.119-126
    • /
    • 2000
  • The BOES (BOAO Echelle Spectrograph), a fiber-fed echelle spectrograph of the BOAO 1.8 m telescope, has been designed and now is being manufactured. The BOES follows a white pupil design collimated with two off-axis parabolic mirrors. The 136mm collimating beam leaving the 41.59 grooves/mm R4 echelle grating is refocused near the narrow folding mirror. Through the two cross-disperser prisms and $\phi250 mm(f/1.5)$ transmission camera, the beam images on EEV $2k\times4k$ CCD. The BOES can take the wavelength range of 3700 to $10100{\AA}$ at a single spot with spectral resolution R = 20000 to 40000 depending on the fiber set employed. We describe the key sciences and performance, current status of construction, and future plan of the BOES.

  • PDF

Fabrication of Prototype vuv Spectrometer & Liquid Target System Containing Hydrogen

  • Lee, Yun-Man;Kim, Jae-Hun;Kim, Jin-Gon;An, Byeong-Nam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.586-586
    • /
    • 2012
  • The vuv spectrometer for ITER main plasma measurement is designed as a five-channel spectral system. To develop and verify the design, a two-channel prototype system was fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. For test of the prototype system, a hollow cathode lamp is used as a light source. The system is composed of a collimating mirror to collect the light from source to slit, and two holographic diffraction gratings with toroidal geometry to diffract and also to collimate the light from the common slit to detectors. The overall system performance was verified by comparing the measured spectral resolutions with the calculated spectral resolutions. And we also have developed liquid jet target system. This study is about a neutron generator, which is designed to overcome many of the limitations of traditional beam-target neutron generators by utilizing a liquid target. One of the most critical aspects of the beam-target neutron generator is the target integrity under the beam exposure. A liquid target can be a good solution to overcome damage to the target such as target erosion and depletion of hydrogen isotopes in the active layer, especially for the ones operating at high neutron fluxes and maintained relatively thin with no need for water cooling. In this study, liquid target containing hydrogen has been developed and tested.

  • PDF

Development of liquid target for beam-target neutron source & two-channel prototype ITER vacuum ultraviolet spectrometer

  • Ahn, B.N.;Lee, Y.M.;Dang, J.J.;Hwang, Y.S.;Seon, C.R.;Lee, H.G.;Biel, W.;Barnsley, R.;Kim, D.E.;Kim, J.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.421-422
    • /
    • 2011
  • The first part is about development of a liquid target for a neutron source, which is designed to overcome many of the limitations of traditional beam-target neutron generators by utilizing a liquid target neutron source. One of the most critical aspects of the beam-target neutron generator is the target integrity under the beam exposure. A liquid target can be a good solution to overcome damage to the target such as target erosion and depletion of hydrogen isotopes in the active layer, especially for the one operating at high neutron fluxes with no need for water cooling. There is no inherent target lifetime for the liquid target neutron generator when used with continuous refreshment of the target surface exposed to the energetic beam. In this work, liquid target containing hydrogen has been developed and tested in vacuum environment. Potentially, liquid targets could allow a point neutron source whose spatial extension is on the order of 1 to $10{\mu}m$. And the second is about the vacuum ultraviolet (VUV) spectrometer which is designed as a five-channel spectral system for ITER main plasma measurement. To develop and verify the design, a two-channel prototype system was fabricated with No. 3 (14.4 nm~31.8 nm) and No. 4 (29.0 nm~60.0 nm) among the five channels. For test of the prototype system, a hollow cathode lamp is used as a light source. The system is composed of a collimating mirror to collect the light from source to slit, and two holographic diffraction gratings with toroidal geometry to diffract and also to collimate the light from the common slit to detectors. The two gratings are positioned at different optical distances and heights as designed. To study the appropriate detector for ITER VUV system, two different electronic detectors of the back-illuminated charge coupled device and the micro-channel plate electron multiplier were installed and the performance has been investigated and compared in the same experimental conditions. The overall system performance was verified by measuring the spectrums.

  • PDF

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.