• Title/Summary/Keyword: Colliding

Search Result 162, Processing Time 0.025 seconds

An Experimental Study on the Ultimate Longitudinal Strength of Ship Structures Damaged due to Side Collision (충돌 손상된 선체구조의 최종 종강도에 관한 실험적 연구)

  • Lee, Tak-Kee;Rim, Chae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2008
  • Ships in bad weather conditions are likely to be subjected to accidental loads, such as high bending moment, collision, and grounding. Once she has damage to her hull, her ultimate strength will be reduced. This paper discusses an investigation of the effect of collision damage on the ultimate strength of a ship structure by performing a series of collapse tests. For the experiment, five box-girder models with stiffeners were prepared with a cross section of $720mm\;{\times}\;720mm$ and a length of 900mm. Of the five, one had no damage and four had an ellipse shaped damage area that represented the shape of the bulbous bow of a colliding ship. The amount of damage size was different between models. Among the damaged models, the damage in three of them was made by cutting the plate and stiffener, and in one by pressing to represent collision damage. Experiments were carried out under a pure bending load and the applied load and displacements were recorded. The ultimate strength was reduced as the damage size increased, as expected. The one with the largest amount of damage had damage to 30% of the depth, and its ultimate strength was reduced by 19% compared to the undamaged one. The pressed one has higher ultimate strength than those that were cut. This might be due to the fact that the plate around the pressed damage area contributes to the ultimate strength, whereas the cut one has no plate to contribute.

Development of ICT based Automated Detection & Propagation System for Accidents in Agricultural Machinery (농기계 안전사고 시 자동상황전파를 위한 ICT기반 시스템 개발)

  • Oh, Yeon-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1365-1372
    • /
    • 2018
  • Recently, the aging of agricultural society has caused a rapid increase in safety accidents in -agricultural machinery. Sometimes, the wounded may be left unattended resulting serious situation. In order to solve these problems, ICT technology is used to detect and inform the accident quickly when a safety accident such as overturning, collision or other accidents occurs during the operation or moving the agricultural machinery, such as cultivator, rearing machine, and tractor. A system capable of minimizing the amount of data is required. In this paper, an ICT - based automatic accident detection & propagation system is proposed for the agricultural machinery accident such as colliding crashes or overturning of agricultural machinery. The proposed system enables quick rescue by sending a text message automatically to family, acquaintances, hospitals and 119 in the event of an agricultural accident.

Post-Humans in the SF Narrative and Their Potential as the New Subject (SF서사에서 나타나는 포스트휴먼과 새로운 주체로서의 가능성)

  • Choo, Hye-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.95-102
    • /
    • 2020
  • The purpose of this study is to seek a new understanding of human beings by examining, through the various types of futuristic humans in SF narratives, the changes of human condition and identity, raised by the discussion on the posthuman today. The rapid development of science and technology blurs the line between humans and machines, predicting the birth of the 'new human posterior to the human'. The advancement of technology enables the production of 'human beyond the biological human' through the combination of humans and machines, and humans are becoming more mechanized. On the other hand, machines are gradually developing to the stage of resembling not just the exterior body structure, but the thinking abilities and emotions of human beings. However, by colliding with the traditional view of human beings, artificial changes to the human condition as a result of cutting-edge technology demand a new perspective on the meaning of a new being and changes in human conditions. Therefore, the study examines how human conditions and perceptions have changed in accordance with the evolution of science and technology, and then explores the direction of co-evolution between humans and machines through the various types of futuristic humans that appear in the SF narratives, as well as the potential of futuristic humans as the new subject.

Effect of earthquake induced-pounding on the response of four adjacent buildings in series

  • Elwardany, Hytham;Mosa, Beshoy;Khedr, M. Diaa Eldin;Seleemah, Ayman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Structural pounding due to strong seismic excitations can result in severe damage or even collapse of colliding structures. Many researchers focused on studying the mutual pounding between two adjacent structures while very few researches were concerned with the pounding of a series of structures. This paper aims to study the pounding effect on a series of four buildings having different natural frequencies. The paper also investigates the effect of different arrangements of the four buildings on their pounding response. For this, a mathematical model was constructed using Matlab code where, pounding was modeled using a contact force-based approach. A Non-Linear viscoelastic (Hertzdamp) contact element was used and activated only during the approach period of collision. The mathematical model was validated by comparing its prediction versus experimental results on three adjacent buildings. Then the model was used to study the pounding between four adjacent structures arranged in different sequences according to their natural frequencies. The results revealed that increasing the gap distance generally led to decrease the peak responses of the towers. Such response is somehow different from that predicted earlier by the authors for the case of three adjacent buildings. Moreover, the arrangement of towers has a significant effect on their pounding response. Significant difference between the natural frequencies of adjacent structures increases the pounding forces especially when the more flexible buildings are located at the outer edge of the series. The study points out the need for further researches on buildings in series to gain a better understanding of such complex phenomena.

Analysis of Ship Collision Behavior of Pile Supported Structure (파일지지 구조물의 선박 충돌거동에 대한 해석)

  • Bae, Yong Gwi;Lee, Seong Lo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.323-330
    • /
    • 2008
  • The ship collision analysis of steel pile group as protection system of bridge in navigable waterways was performed to analyze the structural characteristics of protective structure during ship collision. The analysis encompassed finite element modeling of ship and pile, modeling of material non-linearity, hard impact analysis, displacement-based analysis and soft impact analysis for collision scenarios. Through the analysis of hard impact with a rigid wall, impact load for each collision type of ship bow was estimated. In the displacement-based analysis the estimate of energy which protection system can absorb within its maximum horizontal clearance so as to secure bridge pier from vessel contact during collision was performed. Soft impact analysis for various collision scenarios was conducted and the collision behaviors of vessel and pile-supported protection system were reviewed for the design of protection system. The understanding of the energy dissipation mechanism of pile supported structure and colliding vessel would give us the optimized design of protective structure.

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Study on Optimal Design of Traverse Switch System for Maglev Train (자기부상열차용 트레버스 분기기 최적설계 연구)

  • Lee, Younghak;Kim, Chang-Hyun;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2016
  • Emergency tracks are necessary in case a broken down train evacuates, a train needs to make way for a faster train behind it, or a train suddenly stops and following trains must avoid colliding with it. Magnetic Levitated (maglev) Trains can change track to enter an emergency track using a segmented switch or a traverse switch. On a traverse switch, a train can change its track when the part of the track that the train is on moves to the other track. Currently manufactured Maglev trains have two bodies and the total length is 25 meters. If a traverse switch is used, it will only require 30 meters of track to move the train to the other track, so, when it comes to efficiency of costs and space, the traverse switch surpasses the articulated switch. Therefore, in this paper, an optimized design to secure structural safety and weight lightening is suggested. To achieve these results, the heights of the piled concrete and girders which are both placed on the top of the traverse switch, are set as design variables. The Finite Element Method (FEM), in application of kriging and in the design of the experiments (DOE), is used. Maximum stress, deformation, and structural weight are compared with the results, and through this process structural safety and weight lightening is proven.

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.

Collision Strength Assessment for Double Hull Type Product Carrier Using Finite Element Analysis (이중 선체 화학 운반선의 충돌 강도 평가)

  • Paik, Jeom-Kee;Lee, Jae-Myung;Lee, Kyung-Ern;Won, Suk-Hee;Kim, Chelo-Hong;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.481-489
    • /
    • 2004
  • Ship collisions and grounding continue to occur regardless of continuous efforts to prevent such accidents. With the increasing demand for safety at sea and for protection of the environment, it is of crucial importance to be able to reduce the probability of accidents, assess their consequences and ultimately minimize or prevent potential damages to the ships and the marine environment. Numerical simulations for actual collision problem are conducted with a special attention with respect to finite element size, fracture criteria and material properties, which require a careful consideration to improve the accuracy. A parametric analysis varying colliding speed, angle, design loading condition is conducted using nonlinear finite element analysis method for 46,00 dwt Product/chemical carrier. The relationship between the absorbed energy and indentation are derived quantitatively using the insights observed from this study, and a novel design concept for assessing the anti-collision performance are proposed.

A Study on the Criteria for Collision Avoidance of Naval Ships for Obstacles in Constant Bearing, Decreasing Range (CBDR) (방위끌림이 없는 장애물에 대한 함정의 충돌회피 기준에 관한 연구)

  • Ha, Jeong-soo;Jeong, Yeon-hwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.377-383
    • /
    • 2019
  • Naval ships that are navigating always have the possibility of colliding, but there is no clear maneuvering procedure for collision avoidance, and there is a tendency to depend entirely on the intuitive judgment of the Officer Of Watch (OOW). In this study, we conducted a questionnaire survey when and how to avoid collision for the OOW in a Constant Bearing, Decreasing Range (CBDR) situation wherein the naval ships encountered obstacles. Using the results of the questionnaire survey, we analyzed the CBDR situation of encountering obstacles, and how to avoid collision in day/night. The most difficult to maneuver areas were Pyeongtaek, Mokpo, and occurred mainly in narrow channels. The frequency appeared on average about once every four hours, and there were more of a large number of ships encountering situations than the 1:1 situation. The method of check of collision course confirmation was more reliable with the eye confirmation results, and priority was given to distance at closest point of approach (DCPA) and time at closest point of approach (TCPA). There was not a difference in DCPA between the give-way ship and stand-on ship, but a difference between day and night. Also, most navigators prefer to use maneuvering & shifting when avoiding collisions, and steering is 10-15°, shifting ±5knots, and the drift course was direction added stern of the obstacles to the direction of it. These results will facilitate in providing officers with standards for collision avoidance, and also apply to the development of AI and big data based unmanned ship collision avoidance algorithms.