• Title/Summary/Keyword: Colliding

Search Result 162, Processing Time 0.03 seconds

The Effect of Bumper Mismatch on Vehicle Repair Cost (차량 간 범퍼높이 차이가 수리비에 미치는 영향)

  • Choi, Dong-Won;Park, In-Song;Hong, Seung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • It is a frequent occurrence in urban traffic - a low-speed collision in which one vehicle hits the back of another. The vehicles often sustain expensive damage. Bumpers can reduce this damage, but only line up so the initial contact in an impact is bumper to bumper. Then the bumpers on the colliding vehicles have to absorb the crash energy, keeping damage away from expensive sheet metal, lights, and other components. In real world accidents, Bumper mismatches in crashes are increasing, and the resulting repair costs from low-speed collisions are escalating. In this study, we investigated the bumper rail height and analyzed their effects on repair cost. Futhermore, Our 16kph front-into-rear crash tests demonstrates bumper mismatch problem.

Development of Collision Tester for Performance Evaluation of Safety Fence in Baseball Stadiums (야구장 안전펜스 성능평가를 위한 충돌시험기 개발)

  • Han, Eui Don;Jang, Woong Ki;Kho, Sun Tak;Kwak, Ho Taek;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.957-962
    • /
    • 2013
  • This paper presents a performance testing device for safety fences of domestic professional baseball stadiums. Safety fences of professional stadiums have been fabricated and installed without adhering to any safety regulations, safety fences demonstrate critically low safety performances and many outfielders are severely injured every season. In this study, we designed and fabricated a performance testing device for safety fences and investigated its validity and reproducibility. A HIC (head injury criterion) was used for the statistical analysis of colliding data. We found that the optimal expulsion pressure and eliminated the accelerometer by replacing it with a velocity sensor using an estimation of the correlation between the momentum data obtained from velocity sensor and the impulse data from the accelerometer.

MICROSTRUCTURAL EVOLUTION OF SHAPEO-CHARGE LINER AND TARGET MATEREALS DURING BALLISTIC TEST (관통 시험된 성형장약탄 라이너와 타겟 재료에 있어서의 미세조직 변화)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Baek, Un-Hyueong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.46-46
    • /
    • 2001
  • The microstructure of the 1020 mild steel target in the region ahead of craters, made by colliding against Cu and W-Cu shaped-charge jets. has been investigated in the present work. The region ahead of the crater impacted by the Cu shaped-charge jet reveals grain refinement implying the formation of sub-grains, while that of W-Cu one leads to martensitic transformation indicating that the region was heated up to an austenitic region which was followed by rapid cooling. The pressure of W-Cu shaped-charge jet impacting against the target when calculated is higher than that of Cu one. The microhardness of the region ahead of the crater impacted by the W-Cu shaped-charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug that remains inside of the crater depicts the occurrence of the remarkable elongation of W particles during the liner collapse. The microstructural evolution of the region ahead of the crater is discussed on the basis of the pressure dependency of the ferrite/austenite transformation in the steel.

  • PDF

Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy (여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획)

  • Lee, Jong-Hwa;Kim, Ja-Young;Lee, Ji-Hong;Kim, Dong-Hyeok;Lim, Hyun-Kyu;Ryu, Si-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.

Auditory Interaction Design By Impact Sound Synthesis for Virtual Environment (충돌음 합성에 의한 가상환경의 청각적 인터랙션 디자인)

  • Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Focused on the fact that sound is one of the important sensory cues delivering situations such as impact, this paper proposes an auditory interaction design approach for virtual environment. Based on a few sampling of basic material sound for various materials such as steel, rubber, and glass, the proposed method enables design transformations of the basic sound by allowing modification of mode gains that characterize natural sound for the material. In real-time virtual environment, it also provides simulation of modified sound according to the change of impact situation's perceptual properties such as colliding objects' size, hardness, contacting area, and speed. The test results on cognition experiment for discriminating objects' materials and impact situation by sound showed the feasibility of proposed auditory interaction design method.

Neutron Monitor as a New Instrument for KSWPC

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Kyun;Bieber, John W;Cho, Kyung-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.1-34.1
    • /
    • 2008
  • Cosmic ray (CR)s are energetic particles that are found in space and filter through our atmosphere. They are classified with galactic cosmic ray (GCR)s and solar cosmic ray (SCR)s from their origins. The process of a CR particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitor (NM)s. Regarding with the space weather, there are common types of short term variation called a Forbush decrease (FD) and a Ground Level Enhancement (GLE). In this talk, we will briefly introduce our recent studies on CRs observed by NM: (1) simultaneity of FD depending on solar wind interaction, (2) an association between GLE and solar proton events, and (3) diurnal variation of the GCR depending on geomagnetic cutoff rigidity. NM will provide a crucial information for the Korea Space Weather Prediction Center (KSWPC).

  • PDF

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

Experimental and Numerical Investigation of Sliding Response of Unconstrained Objects to Base Excitations (바닥진동에 의한 비구속 물체의 거동파악 실험과 수치해석 전산프로그램의 개발)

  • Lee, Sang Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.463-469
    • /
    • 2014
  • Safety related devices unconstrained temporally in the process of operation of nuclear power plants could be damaged by the sliding during seismic activity. In this study sliding response of unconstrained objects to the base excitations is studied experimentally and analytically. In experiments static and dynamic tests to determine the coefficient of friction and the shaking table experiments to verify the sliding response of the analytic results were conducted. Numerical solutions by solving the nonlinear differential equations of motion governing sliding were found by the computer program using the step by step acceleration method. The exact solutions of the sliding response to the simple forms of base excitations were found to verify the computer program developed in this study. Relative displacement envelopes were suggested as a colliding criteria of the unconstrained objects.

Role of the Ships' Routeing of JiangSu in the development of Port and Channel

  • Xiao, Yingjie
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.203-207
    • /
    • 2004
  • Yangtze River channel is in natural condition for a long time. There are more to be done in grade of navigation and transport. Since 1980's the rate of vessel in JiangSu channel is going up every year, especially for ocean vessels. Meanwhile, the serious factors such as no sailing at night have become a battlement causing the long period for vessels, high cost for shipowners, lower competitiveness for JiangSu ports along the Yangtze River. It also can not meet the port logistic development. After the Ships' Routeing in JiangSu has been carried out. It has improved the safety of navigation in JiangSu area and reduced the risk of pollution or other damage to the marine environment caused by ships colliding or anchoring in or near JiangSu channel. By analyzing, compareing, calculating and model forecasting. The main focus of the paper is put on the study the development of port, channel in JiangSu and efficiency in many fields. Navigation efficiency of the sailing at night; Safety efficiency of reducing the risk by ships; More efficiency of the higher cargo volumes of the other ports in Yangtze River with the increase cargo volume of JiangSu ports along Yangtze River. The purpose of this study is: To get the social and economical efficiency after the Ships' Routeing in JiangSu has been carried out. Also the role of the Ships' Routeing of JiangSu in the development of Port and Channel.

  • PDF

The Experimental Research for the Combustion and Dynamic Characteristics of the Linear Engine on the Variable Spring Stiffness (압축기-연소실 일체형인 리니어엔진의 스프링 강성에 따른 연소 및 동적 특성 연구)

  • Lee, Jaewan;Oh, Yongil;Kim, Gangchul;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.619-627
    • /
    • 2012
  • This study was experimentally investigated on the effects of spring stiffness applied to linear compressor chambers. The springs prevented piston head from colliding with engine cover, stored the kinetic energy and regenerated the kinetic energy. The linear engine has two combustion chambers and four compressor chamber. The combustion chamber bore size was 30 mm, maximum stroke was 31 mm and effective stroke volume was 25.45 cc respectively. The spring stiffness was varied such as 0, 0.5, 1.00, 2.9 and 14.7 N/mm. The linear engine was fueled with premixed LPG (propane 99%) and air by pre-mixture device. As an experimental result, The stroke, piston velocity and the piston frequency were increased by high spring stiffness. Also, thermal efficiency was grown. because the increased stroke made the higher compression ratio. In conclusion, electric power and efficiency were improved.