• Title/Summary/Keyword: Colletotrichum acutatum species complex

Search Result 7, Processing Time 0.018 seconds

Re-identification of Colletotrichum acutatum Species Complex in Korea and Their Host Plants

  • Le Dinh Thao;Hyorim Choi;Yunhee Choi;Anbazhagan Mageswari;Daseul Lee;Seung-Beom Hong
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.384-396
    • /
    • 2023
  • Colletotrichum acutatum species complex is one of the most important groups in the genus Colletotrichum with a high species diversity and a wide range of host plants. C. acutatum and related species have been collected from different plants and locations in Korea and deposited into the Korean Agricultural Culture Collection (KACC), National Institute of Agricultural Sciences since the 1990s. These fungal isolates were previously identified based mainly on morphological characteristics, and a limitation of molecular data was provided. To confirm the identification of species, 64 C. acutatum species complex isolates in KACC were used in this study for DNA sequence analyses of six loci: nuclear ribosomal internal transcribed spacers (ITS), betatubulin 2 (TUB2), histone-3 (HIS3), glyceraldehyde3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), and actin (ACT). The molecular analysis revealed that they were identified in six different species of C. fioriniae (24 isolates), C. nymphaeae (21 isolates), C. scovillei (12 isolates), C. chrysanthemi (three isolates), C. lupini (two isolates), and C. godetiae (one isolate), and a novel species candidate. We compared the hosts of KACC isolates with "The List of Plant Diseases in Korea", previous reports in Korea and global reports and found that 23 combinations between hosts and pathogens could be newly reported in Korea after pathogenicity tests, and 12 of these have not been recorded in the world.

Identification and Characterization of Colletotrichum Species Associated with Bitter Rot Disease of Apple in South Korea

  • Oo, May Moe;Yoon, Ha-Yeon;Jang, Hyun A;Oh, Sang-Keun
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.480-489
    • /
    • 2018
  • Bitter rot caused by Colletotrichum species is a common fruit rotting disease of apple and one of the economically important disease in worldwide. In 2015 and 2016, distinct symptoms of bitter rot disease were observed in apple orchards in five regions of South Korea. In the present study, infected apples from these regions were utilized to obtain eighteen isolates of Colletotrichum spp. These isolates were identified and characterized according to their morphological characteristics and nucleotide sequence data of internal transcribed spacer regions and glyceraldehyde-3-phosphate-dehydrogenase. Molecular analyses suggested that the isolates of Colletotrichum causing the bitter rot disease in South Korea belong to 4 species: C. siamense; C. fructicola; C. fioriniae and C. nymphaeae. C. siamense and C. fructicola belonged to Musae Clade of C. gloeosporioides complex species while C. fioriniae and C. nymphaeae belonged to the Clade 3 and Clade 2 of C. acutatum complex species, respectively. Additionally, we also found that the isolates of C. gloeosporioides species-complex were more aggressive than those in the C. acutatum species complex via pathogenicity tests. Taken together, our results suggest that accurate identification of Colletotrichum spp. within each species complex is required for management of bitter rot disease on apple fruit in South Korea.

Colletotrichum Diversity within Different Species Complexes Associated with Fruit Anthracnose in South Korea and Their Fungicides In-Vitro Sensitivity (국내 과실 탄저병을 일으키는 종 복합체와 종 다양성 및 살균제 감수성)

  • Taehyun Chang;Oliul Hassan;Jong Yeob Jeon;Chi Hyun Kim;Dae Min Lee;Ju Sung Kim;Eun Chan Kang;Jaewon Kim
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.345-362
    • /
    • 2023
  • Anthracnose, caused by the Colletotrichum genus, comprises a significant number of plant pathogens and poses a major threat to fruit production worldwide, including South Korea. Colletotrichum species were identified associated with anthracnose in fruits such as apple, persimmon, plum, peach, jujube, walnut, and grape. A polyphasic approach, including morphology, multigene phylogenetics, and pathogenicity testing, was used. Additionally, the in-vitro sensitivity of identified Colletotrichum species to common fungicides was also evaluated. A total of nine Colletotrichum species within two complexes, namely gloeosporioides and acutatum, have been identified as the causal agents of anthracnose in common fruits in South Korea. In the gloeosporioides complex, we found Colletotrichumaenigma, C. fructicola, C. gloeosporioides, C. horii, C. siamense, and C. viniferum. Meanwhile, in the acutatum complex, C. fioriniae, C. nymphaeae, and C. orientalis were identified. Notably, C. fructicola, C. siamense, C. fioriniae, and C. nymphaeae were reported for the first time from apple, C. siamense, C. fioriniae and C. nymphaeae from plum, C. siamense, C. fructicola, and C. fioriniae frompeach, C. siamense and C. horii from persimmon, C. fioriniae from Omija (Schisandra), C. orientalis from walnut, C. nymphaeae from jujube, and C. aenigma, C. fructicola, and C. siamense fromgrape. Fungicide sensitivity tests revealed significant variation in the EC50 values among specific Colletotrichum species when exposed to different fungicides. Moreover, the same Colletotrichum species isolated from different host plants displayed varying sensitivity to the same fungicide.

First Report of Anthracnose Caused by Colletotrichum nymphaeae on Strawberry Fruits in Korea

  • Je Hyeok Yoo;Myung Soo Park;Doo Hee Yi;Myeong Hyeon Nam
    • The Korean Journal of Mycology
    • /
    • v.52 no.2
    • /
    • pp.109-114
    • /
    • 2024
  • Anthracnose fruit rot (AFR) has been observed in greenhouses during the harvesting period in the Chungnam Province of South Korea. Fruits infected inside the greenhouse show black or brown spots, orange conidial masses and in some areas of the infected parts, white fungal growths are visible. The size of these spots gradually expands, leading to the necrosis of the fruits and flowers. Three isolates were obtained from infected fruits and identified as strains of the Colletotrichum acutatum species complex based on morphological characteristics. Multilocus sequence analysis of actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase genes, and internal transcribed spacer rDNA regions revealed that the isolates belong to a monophyletic group with the type strain of C. nymphaeae. This is the first time C. nymphaeae has been confirmed in strawberry fruit in Korea.

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.

Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field

  • Shin, Jong-Hwan;Park, Byung-Seoung;Kim, Hee-Yeong;Lee, Kwang-Ho;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.307-314
    • /
    • 2021
  • Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.

Optimization of Polyethylene Glycol-Mediated Transformation of the Pepper Anthracnose Pathogen Colletotrichum scovillei to Develop an Applied Genomics Approach

  • Shin, Jong-Hwan;Han, Joon-Hee;Park, Hyun-Hoo;Fu, Teng;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.575-584
    • /
    • 2019
  • Colletotrichum acutatum is a species complex responsible for anthracnose disease in a wide range of host plants. Strain C. acutatum KC05, which was previously isolated from an infected pepper in Gangwon Province of South Korea, was reidentified as C. scovillei using combined sequence analyses of multiple genes. As a prerequisite for understanding the pathogenic development of the pepper anthracnose pathogen, we optimized the transformation system of C. scovillei KC05. Protoplast generation from young hyphae of KC05 was optimal in an enzymatic digestion using a combined treatment of 2% lysing enzyme and 0.8% driselase in 1 M NH4Cl for 3 h incubation. Prolonged incubation for more than 3 h decreased protoplast yields. Protoplast growth of KC05 was completely inhibited for 4 days on regeneration media containing 200 ㎍/ml hygromycin B, indicating the viability of this antibiotic as a selection marker. To evaluate transformation efficiency, we tested polyethylene glycol-mediated protoplast transformation of KC05 using 19 different loci found throughout 10 (of 27) scaffolds, covering approximately 84.1% of the entire genome. PCR screening showed that the average transformation efficiency was about 17.1% per 100 colonies. Southern blot analyses revealed that at least one transformant per locus had single copy integration of PCR-screened positive transformants. Our results provide valuable information for a functional genomics approach to the pepper anthracnose pathogen C. scovillei.