This study was carried out in order to determine soft tissue response to incisor movement and mandibular repositioning and to determine feasibility of predicting vertical and horizontal changes in soft tissue with hard tissue movement. For this study, cephalometric records of 41 orthodontically treated adult females who had Angle's Class II division 1 malocclusion were selected and stepwise multiple regression analysis was employed. Following conclusions were obtained by analysing the changes of soft tissue and hard tissue before and after treatment. 1. Hard tissue measurements that showed significant changes before and after treatment were horizontal and angular changes of maxillary incisor, horizontal,vertical and angular changes of mandibular incisor, overjet, overbite, interincisal angle, mandibular repositioning, A,B, skeletal convexity and soft tissue measurements that showed significant changes were horizontal, thickness and angular changes of upper lip, horizontal and angular changes of lower lip, interlabial angle, nasolabial angle labiomental angle, Sri, Ss, Si and soft tissue convexity(P<0.05). 2. All Soft tissue measurements changed significantly before and after treatment had between one and four hard tissue independent variables at statistically significant level, indicating that all soft tissue changes were direct relationship with hard tissue changes 3. Ova jet, horizontal change of maxillary incisor, horizontal change of maxillary root apex and horizontal change of pogonion entered into prediction equations most frequentely indicating that they were more significant variables in prediction of vertical and horizontal changes in the soft tissue with treatment, but vertical changes of mandibular incisor not entered any prediction equations, indicating that it was not considered a good predictor for soft tissue changes with maxillary incisor retraction. 4. Horizontal and vertical changes in subnasale were found to have most independent variables, significant at the 0.05 level in prediction-equations(${\Delta}$Sn(H):Ur, Is(H), Pg(H), UIA,${\Delta}$Sn(V): Is(H), Pg(H), overjet, A), indicating that subnasale changes are influenced by complex hard tissue interaction. 5. Multiple correlation coefficient($R^2$) of the soft tissue prediction equations ranges from 0.2-0.6.