• 제목/요약/키워드: Collector Efficiency

검색결과 328건 처리시간 0.028초

하절기 태양열 시스템 적용을 위한 이중진공관 히트파이프형 집열기 열성능의 실험적 연구 (An Experimental Study for Apply Solar System on Thermal Performance of Heat Pipe Type Solar Collector using a Glass Concentric Evacuated Tube in a Summer)

  • 강창호;배찬효;홍정규;서정세
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1646-1651
    • /
    • 2004
  • This paper has been carried out to find the thermal efficiency and operating characteristics of heatpipe type solar collector using a glass concentric evacuated tube(CETC) during summer. In an experiment the flow rate of water in collector are 1.5l/min. Collector efficiency is $50{\sim}60%$ during time. The solar radiation appeared in a clear day is efficiency high. Efficiency curve fitted first order polynomial show that $F_{R}$$({\tau}{\alpha})$ and $F_{R}U_{L}$=1.316 is 0.601 and 1.316 respectively.

  • PDF

외부집열판형(外部集熱板型) 태양열(太陽熱) 목재건조기(木材乾燥機)의 집열효율(集熱效率)과 적정(適正) 집열면적(集熱面積) 분석(分析) (Analysis of Collector Efficiency and Proper Collector Size of External Collector Type Solar Lumber Dryer)

  • 이형우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.41-52
    • /
    • 1990
  • Experimental external collector type solar lumber dryer with $1.6m^2$ of collector area and $1.0m^3$ of maximum dryer capacity was designed and constructed to investigate the conditions inside and outside the dryer and collector. The efficiency of collector was calculated and numbers of drying-days and collector areas required to dry $0.2m^3$ and $1.0m^3$ of pine and oak at various an flow rate inside collector were estimated for eight cities in Korea. Average temperatures of collector-inlet and -outlet air and heat absorber were $52.5^{\circ}C$ $57.9^{\circ}C$, and $71.1^{\circ}C$. respectively at 4m/sec of an flow rate inside collector on sunny day in summer. Overall heat transfer coefficient of collector was 4.875W/$m^2^{\circ}C $ and collector efficiency was 52%. Estimated numbers of drying-days required to dry $0.2m^3$ of pine and oak from 80% to 15% moisture content at various air flow rate inside collector were 38 and 66 days. respectively. Areas of collector required to dry $1.0m^3$ of lumber at desired safe drying rate were estimated as $13.7m^2$ for pine and $16.0m^2$ for oak.

  • PDF

원심력이 적용된 여과포집진장치와 기존 집진장치의 성능비교 (Performance Comparison of a Fabric Filter System with Centrifugal Force and a Conventional Fabric Filter System)

  • 김상도;박영옥;강용
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.739-748
    • /
    • 2004
  • A hybrid dust-collector combining a fabric filter with centrifugal force was developed to enhance the performance of the conventional fabric filter systems and its performances were evaluated to compare to that of the existing dust collector. The pressure drop rapidly increased with increasing the elapsed time and the face velocity in two filtration systems. But the increasing ratio of a hybrid dust-collector compare to the existing dust collector was lower. This results were confirmed from the performance such as cleaning interval, residual pressure drop and dust loading rate. The overall collection efficiency of the hybrid dust-collector was more than 99.6% and this showed a improvement of 0.6~2% than that of the existing dust collector. Especially, the fractional collection efficiency at the particle size of around 1${\mu}{\textrm}{m}$ is about 4% higher than that of the existing dust collector.

태양열 집열기 효율곡선에 대한 연구 (The Study of The Collector Efficiency Curve)

  • 신정철
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.198-202
    • /
    • 2014
  • In the solar heat collection system, we can determine how the collector will perform under specific conditions from the efficiency curve. By understanding the basic principles which govern the operation, designers can maximize the output from the collector. Absorptance, transmission and the total heat transfer coefficient were introduced to induce this efficiency curve. Designers who can make use of the implicit information on the curve in this report will generate systems which obtain the best return from their client's investment.

Overall efficiency enhancement and cost optimization of semitransparent photovoltaic thermal air collector

  • Beniwal, Ruby;Tiwari, Gopal Nath;Gupta, Hari Om
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.118-128
    • /
    • 2020
  • A semitransparent photovoltaic-thermal (PV/T) air collector can produce electricity and heat simultaneously. To maximize the thermal and overall efficiency of the semitransparent PV/T air collector, its availability should be maximum; this can be determined through a Markov analysis. In this paper, a Markov model is developed to select an optimized number of semitransparent PV modules in service with five states and two states by considering two parameters, namely failure rate (λ) and repair rate (μ). Three artificial neural network (ANN) models are developed to obtain the minimum cost, minimum temperature, and maximum thermal efficiency of the semitransparent PV/T air collector by setting its type appropriately and optimizing the number of photovoltaic modules and cost. An attempt is also made to achieve maximum thermal and overall efficiency for the semitransparent PV/T air collector by using ANN after obtaining its minimum temperature and available solar radiation.

부하를 고려한 태양열온수시스템의 일간 집열효율에 대한 실험적 분석 (An Experimental Study on Daily Efficiency of Solar Collector with Heating Loads of Solar Water Heating System)

  • 이경호;주홍진;윤응상;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.19-27
    • /
    • 2012
  • This paper describes an experimental study on efficiency of solar collector in solar water heating system connected to hourly water heating load. In general, the functional form of solar efficiency is expressed as a function of fluid temperature entering solar collector, ambient temperature, and solar irradiance. When energy saving from solar heating of water heating system is analyzed on along-term basis such as one year with given solar irradiance data, simplified analysis is more convenient han detailed system simulation for quick assessment. However, the functional form of the efficiency is not convenient for approximately simplified energy analysis because the inlet temperature can be obtained through a detailed system simulation. In the study, solar collector efficiency is obtained with various daily water heating load sand daily solar irradiance using experimental tests. The study also considers large residential buildings such as apartment buildings for application of solar water heating systems. From test results, it is found that daily solar collector efficiency is proportional to daily water heating loads and daily solar irradiance. The data obtained from the study can be utilized to find a functional relation between daily solar irradiance and daily heating load in stead of collector inlet temperature for application of solar collector efficiency to long-term approximated energy analysis of solar heating system.

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

평판형 태양열 집열기의 연중 열적 성능의 모델링 해석 (Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year)

  • 김규덕;박배덕;김경훈
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

태양열급탕시스템의 집열기 배열에 따른 에너지성능 분석 및 평가 (Analysis on the Energy Performance of Solar Water Heating System according to the Configuration of Flat Plate Collectors)

  • 고명진;임보민;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.49-56
    • /
    • 2016
  • The objective of this work is to analyze the variation in energy performance for each flat plate collector connected in series. In this study, it was assumed that solar water heating system with annual solar fraction of 60% was installed in an office building in Seoul, South Korea. The transient energy performance corresponding to four cases, which are selected using different solar radiation and outdoor air temperature, is studied by analyzing the variation in outlet temperature, solar useful heat gain, and thermal efficiency of each collector. It is observed that the useful heat gain and the collector efficiency decrease continuously, and outlet temperature increases when increasing the number of collector connected in series. The long-term performance is assessed by evaluating the thermal efficiency of each collector for two solar radiation conditions ranging from 780 to $820W/m^2$ and from 380 to $420W/m^2$. It is found that the differences between the intercept and slope of the efficiency curves for first and eighth collectors are 3.68% and 6.74% for solar radiation of $800{\pm}20W/m^2$ and 8.57% and 12.90% for solar radiation of $400{\pm}20W/m^2$, respectively. In addition, it is interesting to note that annual useful heat gain and collector efficiency are reduced with similar rate of about 6.13% when increasing the collector area by connecting the collectors in series.

수치시뮬레이션을 이용한 흡입식 슬러지 수집기의 유동해석 (Flow Analysis of the Rotating Sludge Suction Collector by Numerical Simulation)

  • 서상호;노형운;변종훈
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.22-27
    • /
    • 2006
  • Sedimentation phenomenon of suspended solids occurs by the gravitational force. Pollution particles are separated from slowly flowing waste water in clarifier. Recently, the sludge suction collector is Preferred rather than the scraper type sludge collector due to the enhancement of the clarifier efficiency. The sludge suction collector is usually operated by the user's experiences without any scientific and/or technical consideration. To evaluate the performance of sludge suction collector, the three dimensional numerical simulation was conducted by the finite volume method. To analyze the performance, the velocity vectors and the suction flow rates of the orifices were investigated. The result showed that each suction flow rate through out the collector was equivalent in the sludge suction collector and the efficiency of suction collector was good to remove high concentrated sludge in clarifier.