• Title/Summary/Keyword: Collapse trench

Search Result 3, Processing Time 0.017 seconds

Study on Source of Lava Flows Forming the Manjanggul Lava Tube (만장굴 용암동굴을 형성한 용암의 공급지에 관한 연구)

  • Ahn, Ung-San;Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.237-253
    • /
    • 2009
  • The lava flows forming the Manjanggul lava tube are commonly said to have a potential source from the Geomunoreum scoria cone. We inferred the source of lava flows with the Manjanggul lava tube, based on many studies about lava tubes within lava flows of active volcano in the world. We made a lava flow field map from lithofacies, features and latitude of lava surfaces in the northeastern part of Jeju Island, and then examined closely the distribution and mutual relation of lava tubes in each lava flow field. As result, the Geomunoreum lava tube system is divided into a series of master tubes(Utsanjeungul, Bukoreumgul, Daerimdonggul, Manjanggul, Gimnyeonggul, Yongcheondonggul and Dangcheomuldonggul lava tube), a complicated networks of small tubes(Bengdwigul lava tube), and a series of unitary tubes(Gimyeongbilemotgul~Gaeusaemgul lava tube) in Geomunoreum lava flows. Particularly a canyon, 2km in length to NNE direction from the Geomunoreum scoria cone, is interpreted to be collapse trench of lava tube roof that belongs to an upflow part of the master tube in the Geomunoreum lava tube system, according to the location and direction. Accordingly, the source of lava flows, forming the Manjanggul lava tube, is the Geomunoreum scoria cone.

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data (지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구)

  • Kim, Chang-Hwan;Kim, Ho;Jeong, Eui-Young;Park, Chan-Hong;Go, Young-Tak;Lee, Seung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.22-40
    • /
    • 2009
  • Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.