• Title/Summary/Keyword: Collapse length

Search Result 145, Processing Time 0.028 seconds

Influence of seismic design rules on the robustness of steel moment resisting frames

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos;Landolfo, Raffaele;da Silva, Luis S.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.479-500
    • /
    • 2016
  • Seismic design criteria allow enhancing the structural ductility and controlling the damage distribution. Therefore, detailing rules and design requirements given by current seismic codes might be also beneficial to improve the structural robustness. In this paper a comprehensive parametric study devoted to quantifying the effectiveness of seismic detailing for steel Moment Resisting Frames (MRF) in limiting the progressive collapse under column loss scenarios is presented and discussed. The overall structural performance was analysed through nonlinear static and dynamic analyses. With this regard the following cases were examined: (i) MRF structures designed for wind actions according to Eurocode 1; (ii) MRF structures designed for seismic actions according to Eurocode 8. The investigated parameters were (i) the number of storeys; (ii) the interstorey height; (iii) the span length; (iv) the building plan layout; and (v) the column loss scenario. Results show that structures designed according to capacity design principles are less robust than wind designed ones, provided that the connections have the same capacity threshold in both cases. In addition, the numerical outcomes show that both the number of elements above the removed column and stiffness of beams are the key parameters in arresting progressive collapse.

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

Modified Arc-Length Method of Riks (Riks Method를 이용한 비선형 수치해석)

  • jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.182-188
    • /
    • 1991
  • The modified arc-length algorithms for the automatic incremental solution of nonlinear finite element equations proposed by Riks are presented, which comprise the cylindrical arc-length method and the normal arc-length method. These methods are developed to trace the nonlinear path of large displacement problems such as a pre and post bucking/collapse response of general structures. These methods are applied to analyse the nonlinear behavior of arch and shell problems in parallel with the standard and modified Newton-Raphson method.

  • PDF

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

A Study on the Bow Collapse of High-Speed Passenger Craft in Collision with Bridge Pier (고속 여객선의 교각 충돌에 대한 연구)

  • 신영식;박명규
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • During the last 10 years, the various type of high speed craft have been greatly developed, and since around of 1990 the large size of high speed passenger and/or cargo vessels are also introduced and took into the service in the various routes over the world. In a marine traffic way some bridge need to build across a rivers, cannals or a waterways. This one will be an obstruction and potential risk of collision in the way of high speed craft. Accordingly some of collision accident have been reported, which were caused by a lost control, wind and hydrodynamic forces, fog or human errors. In this paper a high speed craft having 40 m length is assumed to be collided with a circular type of bridge piers at right angle. The mode of deformation, penetration depth of collapse, impact forces, reduction of speed, loss of kinetic energy, and influence of scantlings, etc. have been calculated in each speed with a time variation to find a maximum values within a limit, and are graphically presented.

  • PDF

A Development of Platforms for Boiler of Thermal Power Plant (화력발전소 보일러 수퍼히트부 안전발판 개발 연구)

  • Lee, Jung Seok;Lee, Dong Lark;Kim, Hee Kyung;Jeong, Byeong Yong;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • The catastrophic collapse of the in-boiler scaffolding system in the two thermal power plants occurred in March and April 2012. After site investigation and document review, it was found that the specialized scaffolding system was imported for overhaul & maintenance and that the system did not get the safety certification at the import. In this regard, this study developed & proposed an access platform and a support for the vertical tube section of the super heat as well as a variable-length platform for the horizontal tube section, satisfying the domestic certification standards. The access platform was developed to be easy to handle by the worker with a weight of about 0.069 kN, which could reduce the risk of falling accidents and workers' musculoskeletal diseases. For the variable-length platform, it is possible to cope with various changes in length between the horizontal tubes associated with the increase of rigidity in the overlapping and the elimination of the protrusion.

Evaluation on Ground Characteristics of Weathered Granite Masses by Pressuremeter Test (공내재하시험에 의한 화강 풍화암의 지반 특성 평가)

  • Lee, Kwang-Hee;Bae, Kyung-Tae;Chang, Seo-Man;Lee, Chong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.831-838
    • /
    • 2004
  • To study on mechanical characteristics of weathered granite masses are difficult because of undisturbanced sampling and in-situ test. Generally, pressuremeter test is widely used to investigate the behavior of weathered rock masses. However, it has many problems to get a limit pressure because of cavity collapse, membrane damage, ete. This study aims to evaluate the mechanical characteristics of weathered granite masses using in-situ pressuremeter test and numerical analysis depending on the ratio of length and diameter of the membrane(L/D=5, 8, 10, 15, 20). Test results and data are shown that strength parameters are reduced exponentially varing weathering degree, and numerical analysis results are approximately coincided with the test results. And the ratio of length and diameter of the membrane arc not affected the parameters such as modulus of pressuremeter, shear modulus, etc. But limit pressure is increased decreasing membrane length based on numerical analysis. On the other hand, increasing the membrane length, yield pressure is decreased and plastic radius is increased in the case of same weathering degree.

  • PDF

Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System (분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교)

  • Junkyu Park;Sungwook Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.

Plastic Hinge Length of Reinforced Concrete Columns with Low Height-to-Width Ratio (전단경간비가 작은 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Woo, Jae-Hyun;Kim, Byung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.675-684
    • /
    • 2010
  • The reinforced concrete members are designed to fail in flexural to lead ductile fracture. In the building structures, the failure is typically imposed on beams to prevent damages in columns. However, progression of plastic collapse mechanism may ultimately develop, a plastic hinge at the bottem end of the first floor column, which then can be subjected to shear or bond finally due to large axial force and small shear span-to-depth ratio. In this study, 10 RC column specimens failed in shear after flexural yielding was investigated to determine the factors affecting the plastic hinge length. The findings of this study showed that the most effective factor affecting the plastic hinge length was an axial force. As an axial force increase, an axial strain and a ductility ratio were decreased obviously. The test also shows the observed plastic hinge length was about 0.8~1.2d and the this result has difference compared with forward research.

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF