• 제목/요약/키워드: Collapse area

검색결과 340건 처리시간 0.03초

초음파화학 반응에 의한 Ag 도핑 광촉매용 나노 TiO2 분말의 합성 (Synthesis of Nano-Scale Photocatalyic TiO2 Powder Doped with Ag by Sonochemistry Reaction)

  • 조성훈;이수완
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.169-173
    • /
    • 2009
  • In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop $TiO_2$ materials and $TiO_2$ devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create $TiO_2$ nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. $TiO_2$ powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.

수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용 (Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials)

  • 임진영;안정석;안중호
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

산사태 대비 농촌 주민 대피계획 개선 방안 (Improved Plan for Evacuation of Residents in Landslide-Prone Rural Area)

  • 김정면;박성용;임창수;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.1-10
    • /
    • 2017
  • This study has purpose on deducting problems of evacuation plan for vulnerable populations in disaster and suggesting improvement plan through analysis of disaster weakness in domestic rural region aiming at vulnerable populations in disaster like old people containing most of domestic rural population, sometimes being in blind spot of safety when landslide or disaster occur. As a result, we could know that rural regions have high proportion of vulnerable populations in disaster like old people, also being so weak to landslide and slope collapse. So we suggested development of manual describing prevention of disaster and evacuation for vulnerable populations in disaster like old people and disaster evacuation organization for house and minimizing solution for damage of human life through improvement of steep slope evaluation criteria.

코질환과 수면무호흡증 (Nasal Diseases and Its Impact on Sleep Apnea and Snoring)

  • 김창희;이재서
    • 수면정신생리
    • /
    • 제11권1호
    • /
    • pp.17-21
    • /
    • 2004
  • Nasal congestion is one of the most common symptoms of medical complaints. Snoring is caused by vibration of the uvula and the soft palate. Nasal obstruction may contribute not only to snoring and obstructive sleep apnea (OSA) but also impair application of continuous nasal positive airway pressure (CPAP), which is the most widely employed treatment for OSA. Total or near-total nasal obstruction leads to mouth breathing and has been shown to cause increased airway resistance. However, the exact role of the nasal airway in the pathogenesis of OSA is not clear and there is no consensus about the role of nasal obstruction in snoring and sleep apnea. Some reports have failed to demonstrate any correlation between snoring and nasal obstruction. On the other hand, opposing reports suggest that nasal disease may cause sleep disorders and that snoring can be improved after nasoseptal surgery. Reduced cross-sectional area causes increased nasal resistance and predisposes the patient to inspiratory collapse of the oropharynx, hypopharynx, or both. Discrete abnormalities of the nasal airway, such as septal deformities, nasal polyps, and choanal atresia and with certain mucosal conditions such as sinusitis, allergic rhinitis and inferior turbinate hypertrophy can cause snoring or OSA. Thus, these sources of nasal obstruction should be corrected medically or surgically for the effective management of OSA and adjunctive for CPAP.

  • PDF

수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토 (Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure)

  • 김경호;이호진
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

원형 석굴암 상부구조의 장마철 결로 및 열전달 현상의 실험적 연구 (Experimental investigation of dew formation and heat transfer in the original upper structure of Sokkuram grotto)

  • 이진기;송태호
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.588-597
    • /
    • 1999
  • Sokkuram grotto, a UNESCO cultural heritage in Kyongju Korea, was originally covered with crushed rocks over its dome with ventilating holes. The grotto was perfectly preserved for more than 12 centuries until the upper structure was replaced with a concrete dome in the early 20th century to protect from total collapse. Since then, heavy dew formed on the granite surface to seriously damage the sculptures until it was further remodeled with air-conditioning facilities in the 60s. It is considered that the original upper porous structure had a dehumidifying capability. This research is made to unveil the dehumidifying mechanism of the rock layer during the rainy season in that area. A rock layer and a concrete layer are tested in a temperature/humidity-controlled room. No dew formation is observed for the two specimen for continued sunny days or continued rainy days. However, heavy dew formed on the concrete surface for a sunny day after long rainy days. It is thought that the sun evaporates water on the ground and dew is formed at the surface as the highly humid air touches the yet cold concrete. On the contrary, no dew formation is observed for the rock layer at any time. Even in the above worst situation, air flows downward through the cool rock layer and moisture is removed before reaching inside. Temperature measurement, flow visualization, observation of dew formation and measurement of air velocity are made to verify the mechanisms.

  • PDF

Ways of Integration of Media and Educational Space: Problems and Solutions

  • Bordeniuk, Serhii;Nebera, Pavlo;Priadko, Oleksandr;Timlin, Eduard;Khymych, Anatolii
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.61-64
    • /
    • 2021
  • The work is devoted to the problem of modernization of the higher education system of Ukraine through the integration of higher education institutions into the European Higher Education Area. Based on the analysis of statistical data, a conclusion was made about the collapse of the higher education system of Ukraine due to a number of problems, which negatively affects the formation of human capital. The importance of international cooperation with the EU in the field of education for the modernization of higher education is substantiated. The institutional principles of formation are investigated, the main priorities of its development at the present stage are determined. The legal bases of European integration of higher education in Ukraine are analyzed. An analysis of the development of international cooperation of Ukrainian universities and their participation in European educational programs. There is a positive tendency to increase the activity of Ukrainian universities in international cooperation, which increases their position in international rankings. Weaknesses of integration processes are revealed and directions of improvement of higher education are offered.