• 제목/요약/키워드: Collapse Mechanism

검색결과 268건 처리시간 0.025초

폐쇄성 수면 무호흡증의 병인 및 기전 (Pathogenesis and Mechanism of Obstructive Sleep Apnea)

  • 최지호;이승훈;신철
    • 수면정신생리
    • /
    • 제12권2호
    • /
    • pp.105-110
    • /
    • 2005
  • The pathogenesis and mechanism of obstructive sleep apnea (OSA) has been under investigation for over 25 years, but its etiology and mechanism remains elusive. Skeletal (maxillary and/or mandibular hypoplasia or retrodisplacement, inferior displacement of hyoid) and soft tissue (increased volume of soft tissue, adenotonsillar hypertrophy, macroglossia, thickened lateral pharyngeal walls) factors, pharyngeal compliance (increased), pharyngeal muscle factors (impaired strength and endurance of pharyngeal dilators and fixators), sensory factors (impaired mechanoreceptor sensitivity, impaired pharyngeal dilator reflexes), respiratory control system factors (unstable respiratory control) and so on facilitate collapse upper airway. Therefore, OSA may be a heterogeneous disorder, rather than a single disease entity and various pathogenic factors contribute to the OSA varies person to person. As a result, patients may respond to different therapeutic approaches based on the predominant abnormality leading to the sleep-disordered breathing.

  • PDF

비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가 (Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis)

  • 신동현;김형준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.9-20
    • /
    • 2014
  • 철골 중간모멘트골조는 강한 지반운동에 대하여 적합한 저항능력을 확보하기 위한 지진력저항시스템으로서 일반적으로 사용되고 있다. 하지만 국내의 대다수 중 저층 철골건축물은 내진설계가 도입되기 이전에 건설되었거나 현재의 내진설계기준의 요구조건을 준수하지 않은 것들로, 이러한 건물들이 가지는 내진성능에는 의문점이 존재한다. 이와 같은 문제점의 인식에 기반하여 본 연구에서는 국내 철골 중간 모멘트골조의 내진성능에 대한 정량적 제시를 목표로 우선 층수 종류, 지진에 대한 보유내력, 부재 연성도, 제진장치의 유무를 변수로 하여 표본 건물을 설계하였다. 표본 건물의 내진 성능과 붕괴 매커니즘은 비선형 정적해석과 증분동적해석으로부터 획득한 붕괴여유비와 붕괴확률을 이용하여 분석하였다. 해석결과를 통하여 현행 국내기준에 따라 내진설계된 신축건물은 설계지진에 대해 충분한 내진성능을 가졌으며, 이에 반해 구조부재의 연성저감이 발생하거나 낮은 설계 밑면전단력에 대한 저항력을 가진 기존건물의 경우에는 높은 붕괴확률을 가지며 목표로 한 내진성능을 만족시키지 못하는 것으로 나타났다. 이와 같은 내진성능을 충족시키지 못하는 내진설계 도입 이전의 건물에 대해서 에너지 소산장치를 통해 보강하게 되면 장치의 에너지 소산능력뿐만 아니라 소성힌지의 재분배를 통해 붕괴확률 및 내진성능이 신축건물 수준으로 향상되었다.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

THREE-DIMENSIONAL SIMULATION OF A ROTATING CORE-COLLAPSE SUPERNOVA

  • NAKAMURA, KO;KURODA, TAKAMI;TAKIWAKI, TOMOYA;KOTAKE, KEI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.481-483
    • /
    • 2015
  • Multi-dimensionality in the inner working of core-collapse supernovae has long been considered one of the most important ingredients to understand the explosion mechanism. We perform a series of numerical experiments to explore how rotation impacts the 3-dimensional hydrodynamics of core-collapse supernova. We employ a light-bulb scheme to trigger explosions and a three-species neutrino leakage scheme to treat deleptonization effects and neutrino losses from the neutron star interior. We find that the rotation can help the onset of neutrino-driven explosions for models in which the initial angular momentum is matched to that obtained from recent stellar evolutionary calculations (${\sim}0.3-3rad\;s^{-1}$ at the center). For models with larger initial angular momenta, a shock surface deforms to be oblate due to larger centrifugal force. This makes a gain region, in which matter gains energy from neutrinos, more concentrated around the equatorial plane. As a result, the preferred direction of the explosion in 3-dimensional rotating models is perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that are often obtained from 2-dimensional simulations.

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Limit analysis of seismic collapse for shallow tunnel in inhomogeneous ground

  • Guo, Zihong;Liu, Xinrong;Zhu, Zhanyuan
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.491-503
    • /
    • 2021
  • Shallow tunnels are vulnerable to earthquakes, and shallow ground is usually inhomogeneous. Based on the limit equilibrium method and variational principle, a solution for the seismic collapse mechanism of shallow tunnel in inhomogeneous ground is presented. And the finite difference method is employed to compare with the analytical solution. It shows that the analytical results are conservative when the horizontal and vertical stresses equal the static earth pressure and zero at vault section, respectively. The safety factor of shallow tunnel changes greatly during an earthquake. Hence, the cyclic loading characteristics should be considered to evaluate tunnel stability. And the curve sliding surface agrees with the numerical simulation and previous studies. To save time and ensure accuracy, the curve sliding surface with 2 undetermined constants is a good choice to analyze shallow tunnel stability. Parameter analysis demonstrates that the horizontal semiaxis, acceleration, ground cohesion and homogeneity affect tunnel stability greatly, and the horizontal semiaxis, vertical semiaxis, tunnel depth and ground homogeneity have obvious influence on tunnel sliding surface. It concludes that the most applicable approaches to enhance tunnel stability are reducing the horizontal semiaxis, strengthening cohesion and setting the tunnel into good ground.

Prediction of karst sinkhole collapse using a decision-tree (DT) classifier

  • Boo Hyun Nam;Kyungwon Park;Yong Je Kim
    • Geomechanics and Engineering
    • /
    • 제36권5호
    • /
    • pp.441-453
    • /
    • 2024
  • Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.

전통석조아치교량의 구조적 거동에 대한 연구 (Study on Structural Behavior of Traditional Stone Bridges)

  • 김남희;고현무;홍성걸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.78-83
    • /
    • 2008
  • There are many Korean traditional stone structures that have resisted successfully over more than several hundred years. However, their structural behavior is not investigated in engineering context yet. It is then difficult to predict how they behave against various loadings if they face. This paper is to investigate structural performance of the stone bridge structures based on the limit theorem. Structural performance of stone bridges are explained using possible collapse mechanisms with the corresponding thrusts whose values depend on the loads and the arch geometry.

  • PDF

경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성 (Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight)

  • 이길성;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF