• 제목/요약/키워드: Collapse Mechanism

검색결과 267건 처리시간 0.023초

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

교각 강성과 교량의 붕괴기구 (Pier Stiffness and Bridge Collapse Mechanism)

  • 국승규
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.187-192
    • /
    • 2016
  • 일반설계에서 탄성거동을 전제로 구조물을 설계하는 것과 달리 내진설계는 구조물의 소성거동을 규명하고 조정하여 붕괴를 방지하는 것이 목적이다. 일반교량의 경우에 요구되는 붕괴방지수준은 교량의 특정한 구조부재의 소성거동으로 낙교를 방지하여 지진발생 이후에 긴급차량의 통과를 가능하게 하는 것이다. 이러한 소성거동은 연결부분 또는 교각기둥에 제한되고 각 경우에 적절한 조치가 요구된다. 도로교설계기준은 교각기둥에서 소성힌지를 형성하여 연성붕괴기구를 구성하는 설계방식과 함께 철근콘크리트 교각을 하부구조로 하는 교량을 대상으로 연결부분의 항복을 이용하여 취성붕괴기구를 구성하는 연성도 내진설계를 부록으로 제시하고 있다. 이 연구에서는 철근콘크리트 교각기둥과 강재받침으로 설계된 일반교량을 선정하고 연성붕괴기구와 취성붕괴기구를 모두 고려한 붕괴방지 설계절차 및 도로교설계기준에 요구되는 수정사항을 제안하였다.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

전력계통에서의 전압붕괴 매카니즘에 관한 연구 (A Study on Voltage Collapse Mechanism in Electric Power Systems)

  • 김도형;류헌수;문영현;최병곤;박정도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.171-174
    • /
    • 2001
  • In this paper, an EMM(Equivalent Mechanical Model) is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model the voltage collapse mechanism has been illustrated by showing the exactness of the results. It is also discussed a system transform in technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications.

  • PDF

A Study on Voltage Collapse Mechanism using Equivalent Mechanical Model

  • Kim, Do-Hyung;Ryu, Heon-Su;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • 제12A권1호
    • /
    • pp.6-14
    • /
    • 2002
  • In this paper, an EMM(Equivalent Mechanical Model) Is developed to explain the voltage collapse mechanism by reflecting the effects of reactive powers. The proposed EMM exactly represents the voltage instability mechanism described by the system equations. By the use of the EMM model, the voltage collapse mechanism has been illustrated by showing the exactness of the results. The stable region has been investigated with a reactive-power-controlled two-bus system, which shows that special alerts are required when the system operates with leading power factor. It is also discussed a system transform technique to eliminate the resistance component of the Thevenin equivalent impedance for practical applications. Finally, the results adopting the proposed method fur sample systems which were transformed are listed

Seismic collapse propagation in 6-story RC regular and irregular buildings

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Karimiyan, Morteza;Kashan, Ali Husseinzadeh
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.753-779
    • /
    • 2013
  • One of the most important issues in progressive collapse mechanism of the buildings is evaluation of the collapse distribution in presence of the earthquake loads. Here, collapse propagation is investigated by tracking down the location and type of the collapsed beam and column elements, from the first element to the entire buildings. 6-story reinforced concrete ordinary moment resisting frame buildings with one directional mass eccentricity of 0%, 5%, 15% and 25% are studied to investigate differences among the progressive collapse mechanism of the regular and irregular buildings. According to the results of the nonlinear time history analyses, there are some patterns to predict progressive collapse scenarios in beam and column elements of the similar regular and irregular buildings. Results also show that collapse distribution patterns are approximately independent of the earthquake records.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Plastic design of seismic resistant reinforced concrete frame

  • Montuori, Rosario;Muscati, Roberta
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.205-224
    • /
    • 2015
  • A new method for designing moment resisting concrete frames failing in a global mode is presented in this paper. Starting from the analysis of the typical collapse mechanisms of frames subjected to horizontal forces, the method is based on the application of the kinematic theorem of plastic collapse. The beam section properties are assumed to be known quantities, because they are designed to resist vertical loads. As a consequence, the unknowns of the design problem are the column sections. They are determined by means of design conditions expressing that the kinematically admissible multiplier of the horizontal forces corresponding to the global mechanism has to be the smallest among all kinematically admissible multipliers. In addition, the proposed design method includes the influence of second-order effects. In particular, second-order effects can play an important role in the seismic design and can be accounted for by means of the mechanism equilibrium curves of the analysed collapse mechanism. The practical application of the proposed methodology is herein presented with reference to the design of a multi-storey frame whose pattern of yielding is validated by means of push-over analysis.