• Title/Summary/Keyword: Collapse Analysis

Search Result 1,315, Processing Time 0.044 seconds

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Collapse Simulation with a Finite Element Limit Analysis for Thin-walled Structures Considering Forming Effects (성형효과를 고려한 박판 부재의 유한요소 극한해석을 이용한 붕괴거동해석)

  • Kim, Kee-Poong;Heh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.182-189
    • /
    • 2002
  • This paper is concerned with a collapse behavior analysis for a thin-walled structure considering farming effects. Numerical simulation is carried out with a finite element limit analysis in order to identify forming effects on collapse behavior of a thin-walled structure such as an S-rail. The formed S-rail contains fabrication histories such as residual stress, work hardening, non-uniform thickness distribution and geometric changes resulted from the forming process. The collapse behavior analysis of an S-rail with forming effects leads to different results from that without such effects. The present study deals with the collapse analysis of the S-rail fabricated with the typical forming, trimming and springback processes. Collapse properties such as the collapse load, the collapse mode and the energy absorption are calculated and investigated In order to identify forming effects. It is fully demonstrated that the design of thin-walled structures needs to consider the forming effects for a proper assessment of the load-carrying capacity and the deformation of the formed structures.

Development of Progressive Collapse Analysis Program considering Dynamic Effects (동적효과를 고려한 연쇄붕괴해석 프로그램의 개발)

  • Kim, Jin-Koo;Park, Jun-Hee;An, Da-Woon;Kim, Hyun-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.771-776
    • /
    • 2007
  • Widespread propagation of failure can be triggered by localized damage to a structure because of fires, impact and explosion etc. In this paper, the progressive collapse analysis program is developed to automatically check the failed members and construct the modified structural model at each step. OpenSees, that is widely used in many research groups, was used for the developed progressive collapse analysis control program. The control program developed in this study automatically computes the damage indices of all the structural members and performance a progressive collapse analysis after the first failed member is selected. Using the developed program, we compared the progressive collapse behaviors of the example structures considering dynamic effects or not, and the difference of progressive collapse mechanism according to the modeling method of the failed members.

  • PDF

Dynamic analysis method for the progressive collapse of long-span spatial grid structures

  • Tian, Li-min;Wei, Jian-peng;Hao, Ji-ping;Wang, Xian-tie
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.435-444
    • /
    • 2017
  • In the past, the progressive collapse resulting from local failures during accidents has caused many tragedies and loss of life. Although long-span spatial grid structures are characterised by a high degree of static indeterminacy, the sudden failure of key members may lead to a catastrophic progressive collapse. For this reason, it is especially necessary to research the progressive collapse resistance capacity of long-span spatial grid structures. This paper presents an evaluation method of important members and a novel dynamic analysis method for simulating the progressive collapse of long-span spatial grid structures. Engineering cases were analysed to validate these proposed method. These proposed methods were eventually implemented in the progressive collapse analysis of the main stadium for the Universiade Sports Center. The roof of the structure was concluded to have good resistance against progressive collapse. The novel methods provide results close to practice and are especially suitable for the progressive collapse analysis of long-span spatial grid structures.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

An Evaluation for Progressive Collapse Resisting Capacity of a 80F RC Flat Plate for Sustainable Super Tall Building (지속가능한 초고층 건물을 위한 80층 RC 플랫 플레이트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung Woo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.151-157
    • /
    • 2010
  • This study is connected with evaluation of the progressive collapse resisting capacity for sustainable RC super tall building design. As the progressive collapse is not considered in current design codes in Korea, differences between linear static and dynamic analysis based on the GSA guidelines was analyzed for better evaluation, and the analysis model of flat plate system was determined. Finally, the progressive collapse resisting capacity was evaluated for structural system of super tall building. According to this study, the results by linear dynamic analysis were underestimated than the results by linear static analysis. Thus, the dynamic coefficient value of 2 provides conservative approach. The Effective Beam Width's model, currently used in field, is useful for the analysis about lateral force, but this model does not consider the effect of load redistribution by the slab. Hence, finite element analysis considering slab element will be needed for progressive collapse resisting capacity of the flat plate system. Finally, analysis model of 80-story building designed based on KBC(Korea Building Code) shows the weakness against progressive collapse because the DCR value is over 2. Thus, the countermeasure for alternative loading path such as installment of spandrel beam and reinforcements around slab is required to prevent the progressive collapse.

Structural Analysis of Stone Pagoda in Miruksa Temple Site using Discrete Element Method (개별요소법을 이용한 미륵사지 석탑의 구조해석)

  • Kim Ho-Soo;Jung Sung-Jin;Hong Seok-Il
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.427-434
    • /
    • 2006
  • The stone pagoda on the Miruksa temple site has a high value as architectural history, because this stone pagoda is one of the oldest and grandest stone pagodas which remain in Korea today. However, this stone pagoda has remained only six stones of the northeastern part, becased this stone pagoda was collapsed at past. Therefore, it is important to know the original structure and form of this stone pagoda. Hypotheses about collapse cause of this stone pagoda are presented as four cases: collapse by earthquake, collapse by fragility of ground, collapse by durability reduction, and collapse by lightning, On the basis of these four collapse hypotheses in this study, we investigate collapse phenomenon through the structural analysis using discrete element method and evaluate collapse causes of this stone pagoda.

  • PDF

Efficient and automated method of collapse assessment

  • Qi, Yongsheng;Gu, Qiang;Li, Dong
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2012
  • Seismic collapse analysis requires efficient and automated method to perform thousands of time history analyses. The paper introduced the advantages of speed and convergence property of explicit method, provided a few techniques to accelerate speed of calculation and developed an automated procedure for collapse assessment, which combines the strong capacity of commercial explicit finite element software and the flexible, intelligent specialties of control program written in FORTRAN language aiming at collapse analysis, so that tedious and heavy work of collapse analysis based on FEMAP695 can be easily implemented and resource of calculation can be made the best use of. All the key commands of control program are provided to help analyzers and engineers to cope with collapse assessment conveniently.

A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis (열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.