• Title/Summary/Keyword: Collagen scaffold

Search Result 74, Processing Time 0.032 seconds

Biocompatibility of two experimental scaffolds for regenerative endodontics

  • Leong, Dephne Jack Xin;Setzer, Frank C.;Trope, Martin;Karabucak, Bekir
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.98-105
    • /
    • 2016
  • Objectives: The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods: One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of $1.0{\times}10^4$, $2.5{\times}10^4$, and $5.0{\times}10^4$. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results: Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at $5.0{\times}10^4$ hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions: The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.

The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell (다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향)

  • Park, Beyoung Yun;Seo, Sang Woo;Lee, Won Jai;Ryu, Chang Woo;Rah, Dong Kyun;Son, Hyun Joo;Park, Jong Chul
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

The Comparison of Sponges and PLGA Scaffolds Impregnated with DBP on Growth Behaviors of Human Intervertebral Disc Cells (DBP 스폰지와 DBP/PLGA 지지체에서의 인간 디스크세포 거동분석 비교)

  • Lee, Seon-Kyoung;Hong, Hee-Kyung;Kim, Su-Jin;Kim, Yong-Ki;Song, Yi-Seul;Ha, Yoon;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.398-404
    • /
    • 2010
  • We fabricated sponge and poly(lactide-co-glycolide)(PLGA) scaffolds impregnated demineralized bone particle(DBP)(DBP/PLGA) and investigated proper condition to proliferation and phenotype maintenance of intervertebral disc(IVD) cells by comparison between DBP/PLGA scaffold and DBP sponge. DBP/PLGA scaffolds were prepared by solvent casting/salt leaching. Human IVD cells were seeded in scaffolds of two types. Cell viability and proliferation according to scaffolds were analyzed by WST assay and SEM. RT-PCR was assessed to measure mRNA expression of aggrecan and type II collagen of human IVD cells. In WST assay results, cell viability in scaffolds impregnated DBP/PLGA scaffold were higher than DBP sponge. We could observe that disc cell mRNA expressed better in DBP/PLGA scaffold than DBP sponge. We concluded that the using of DBP/PLGA in terms of scaffold fabrication for bio-disc with human IVD cells is helpful growth of disc cells maintenance of phenotypes.

Application of purified porcine collagen in patients with chronic refractory musculoskeletal pain

  • Seong, Hyunyoung;Kim, Raing Kyu;Shin, Youngjae;Lee, Hye Won;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.33 no.4
    • /
    • pp.395-399
    • /
    • 2020
  • Background: This study aimed to assess the potential efficacy of purified porcine atelocollagen (PAC) for the management of refractory chronic pain due to suspected connective tissue damage. Methods: Patients treated with PAC were retrospectively evaluated. Patients with chronic refractory pain, suspected to have originated from musculoskeletal damage or defects with the evidence of imaging studies were included. Pain intensity, using the 11-point numerical rating scale (NRS), was assessed before the procedure, and 1 month after the last procedure. Results: Eighty-eight patients were finally included for investigation. The mean NRS score was decreased from 5.8 to 4.1 after 1 month of PAC injection (P < 0.001). No independent factor was reported to be directly related to the decrease in NRS score by more than half. Conclusions: Application of PAC may have potential as a treatment option for refractory chronic musculoskeletal pain. PAC might promote tissue recovery, act as a scaffold for repair, or directly reduce inflammation.

Periodontal healing using a collagen matrix with periodontal ligament progenitor cells in a dehiscence defect model in beagle dogs

  • Yoo, Seung-Yoon;Lee, Jung-Seok;Cha, Jae-Kook;Kim, Seul-Ki;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.215-227
    • /
    • 2019
  • Purpose: To histologically characterize periodontal healing at 8 weeks in surgically created dehiscence defects in beagle dogs that received a collagen matrix with periodontal ligament (PDL) progenitor cells. Methods: The bilateral maxillary premolars and first molars in 6 animals were used. Standardized experimental dehiscence defects were made on the buccal side of 3 premolars, and primary culturing of PDL progenitor cells was performed on the molars. Collagen matrix was used as a scaffold and a delivery system for PDL progenitor cells. The experimental sites were grafted with collagen matrix (COL), PDL progenitor cells with collagen matrix (COL/CELL), or left without any material (CTL). Histologic and histomorphometric analyses were performed after 8 weeks. Results: The defect height from the cementoenamel junction to the most apical point of cementum removal did not significantly differ across the CTL, COL, and COL/CELL groups, at $4.57{\pm}0.28$, $4.56{\pm}0.41$, and $4.64{\pm}0.27mm$ (mean ${\pm}$ standard deviation), respectively; the corresponding values for epithelial adhesion were $1.41{\pm}0.51$, $0.85{\pm}0.29$, and $0.30{\pm}0.41mm$ (P<0.05), the heights of new bone regeneration were $1.32{\pm}0.44$, $1.65{\pm}0.52$, and $1.93{\pm}0.61mm$ (P<0.05), and the cementum regeneration values were $1.15{\pm}0.42$, $1.81{\pm}0.46$, and $2.57{\pm}0.56mm$ (P<0.05). There was significantly more new bone formation in the COL/CELL group than in the CTL group, and new cementum length was also significantly higher in the COL/CELL group. However, there were no significant differences in the width of new cementum among the groups. Conclusions: PDL progenitor cells carried by a synthetic collagen matrix may enhance periodontal regeneration, including cementum and new bone formation.

Effects of Mechanical Stimuli on the Cell Proliferation and Collagen Production on the Micropatterned Substrate

  • Park Su-A;Kim In-Ae;Kim Chong-Rak;Shin Ji-Won;Heo Su-Jin;Hwang Young-Mi;Kim Dong-Hwa;Shin Jung-Woog
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • In relation to the tissue engineering, the cellular responses to the morphology of the scaffold surface are interesting topics. Human ligament fibroblasts (HLFs) were cultured on the micrpatterned silicone substrates subjected to cyclic stretch to simulate ligament motion. Groove and ridge width of silicone substrates was 10/50, 20/50, 20/10, and 20/20 ${\mu}m$ (groove/ridge ${\mu}m$) with a depth of $3{\mu}m$. Strain was applied over two days for 4 hours per day with a frequency of 0.5 Hz with the magnitudes of 4 or 8%. The purpose of this study was to evaluate ligament fibroblast alignment and cellular responses in relation to the pattern of microgrooved surface and stretching magnitude. Ligament fibroblasts in the microgrooved surface were elongated and aligned parallel to the microgrooves under no stretch. Uniaxial cyclic stretch induced cellular activities and their orientation rise in cellular response and the cells showed alignment and elongation perpendicular to the direction of the stretch. Biochemical analyses showed that the best cellular response was found on the $20/50{\mu}m$ under 8% stretch. The surface morphology and mechanical stretching were found to contribute to increase of proliferation, collagen production.

  • PDF

Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells

  • Kim, Jwa-Young;Choi, Je-Yong;Jeong, Jae-Hwan;Jang, Eun-Sik;Kim, An-Sook;Kim, Seong-Gon;Kwon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-${\beta}1$ expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation.

THE EFFECTS OF ATELO-COLLAGEN SPONGE INSERTION ON THE PERIODONTAL HEALING OF SECOND MOLARS AFTER IMPACTED MANDIBULAR THIRD MOLAR EXTRACTION (매복 하악 제3대구치 발치와에 Atelo-collagen Sponge 삽입이 제2대구치 예후에 미치는 영향)

  • Nam, Jin-Woo;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2009
  • Extracellular matrix(ECM) is known to function as a reservoir of endogenous growth factors, can be an effective delivery system of growth factor that easily lost bioactivity in solution. Fibrillar collagens like type I collagen, are the major constituent of the ECM and structural protein of bone. Also, it can be a scaffold for osteoblast migration. The purpose of this study was to compare the effects of absorbable Atelo-collagen Sponge($Teruplug^{(R)}$) insertion in tooth extraction sites on periodontal healing of the mandibular second molar after the extraction of the impacted third molar. The study population comprised 31 cases who had been scheduled for surgical removal of impacted mandibular third molars. All patients were in good general health and were not using any medication that would influence wound healing after surgery. In 15 cases control group, none was inserted into the tooth extraction site. In 16 cases experimental groups, $Teruplug^{(R)}$ was inserted into the tooth extraction site. We evaluated tooth mobility, pocket depth, gingival margin level preoperatively and 1 week, 2 weeks, 4 weeks, and 3 months postoperatively. The change was compared with two groups using Mann-Whitney test. The results were as follows. 1. There was no significant change of tooth mobility on both groups. 2. There was tendency of decreasing of previous pocket depth causing tooth extraction on both groups. 3. On gingival margin level, there was various change according to initial swelling and loss of attachment on both groups. 4. There was tendency of decreasing of gingival margin level on both groups because of removal of inflammation and decreasing of previous pocket depth. 5. There was large change of pocket depth on buccal middle, distal, lingual distal area because of tooth extraction and bone reduction. Compared with the control group and experimental group, we observed significant difference during some periods. The results of this study suggest that absorbable atelo-collagen sponge($Teruplug^{(R)}$) is relatively favorable bone void filler with prevention of tissue collapse, food packing and enhance periodontal healing.

Usefulness of Atelo-collgen sponge (Teruplug$^{(R)}$) for Treatment of Mandibular Angle Fractures with Third Molar Extraction (하악각 골절에서 제 3 대구치 발치 후 아테로-콜라겐 스펀지의 유용성)

  • Oh, Hwa-Young;Choi, Hwan-Jun;Kwon, Jun-Seong;Lee, Hyung-Gyo;Kim, Yong-Bae
    • Archives of Plastic Surgery
    • /
    • v.38 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • Purpose: Fibrillar collagens like type I collagen, are the major constituent of the extracellular matrix and structural protein of bone. Also, it can be a scaffold for osteoblast migration. The purpose of this study is to estimate the effects of absorbable atelo-collagen sponge (Teruplug$^{(R)}$, Terumo biomaterials Co., Tokyo, Japan) insertion in tooth extraction sites on periodontal healing of the second molar, healing of the fractured mandibular bone and new bone formation of third molar socket after the extraction of the impacted third molar with mandibular angle fracture. Methods: In our study of six cases of mandibular angle fractures, all of them underwent the extraction of the third molar tooth & absorbable atelo-collagen sponge insertion in tooth extraction site. Three of them had a intraoral infection & oral opening to fracture site, two of the six had dental caries, and only one had reduction problem due to third molar position. Six consecutive patients with noncomminuted fractures of the mandibular angle were treated by open reduction and internal fixation using one noncompression miniplates and screws placed through a transoral incision. Results: All of the patients have showed good postoperative functions and have not experienced complications requiring second surgical intervention. There was well healing of the mandibular bone and the most new bone formation of third molar socket after the extraction of the impacted third molar with mandibular angle fracture. Conclusion: The results of this study suggest that absorbable atelo-collagen sponge is relatively favorable bone void filler with prevention of tissue collapse, food packing, and enhance periodontal healing. Thus, the use of atelo-collagen sponge and one noncompression miniplate seems to be relatively easy, safe, and effective for the treatment of fractures of the mandibular angle and third molar extraction.

Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test (조직공학적 연골재생을 위한 In Vitro 환경에서의 탈미네랄화 골분용액을 함유한 PLGA 지지체의 효과)

  • Ahn, Woo-Young;Kim, Hye-Lin;Song, Jeong-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.499-504
    • /
    • 2011
  • Articular cartilage has an intrinsic difficulty in recovering damages, which requires its tissue engineering treatment. Demineralized bone particle (DBP) contains various bioactive molecules. It is widely used biomaterials in the field of tissue engineering. We developed the synthetic/natural hybrid scaffolds with poly(lactide-co-glycolide) (PLGA) and solution of DBP. The chondrocytes were seeded on the PLGA-DBP scaffolds and MTT assay, morphological observation, biological assay for collagen, sGAG, and RT-PCR were performed to analyze the effect of the DBP on cell viability and extracellular matrix secretion. In SEM observation, we observed that PLGA-DBP scaffolds had uniform porosity. As MTT assay showed scaffolds containing DB solution had higher cell viability then only PLGA scaffolds. The PLGA-DBP scaffolds had better ECM production than PLGA scaffold. It was proven by the higher specific mRNA expression in the PLGA-DBP scaffold than that in PLGA scaffold. These results indicated that PLGA-DBP scaffolds might serve as potential cell delivery vehicles and structural bases for in vitro tissue engineered articular cartilage.