• Title/Summary/Keyword: Collagen implant

Search Result 241, Processing Time 0.023 seconds

THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON BONE EXTRACELLULAR MATRIX FORMATION (임플랜트에 연결한 영구자석의 자력이 뼈의 세포외 기질 생성에 미치는 영향에 관한 실험실적 연구)

  • Won, In-Jae;Baik, Jin;Kwon, Kung-Rock;Lee, Sung-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.574-583
    • /
    • 2006
  • Statement of problem : The use of permanent magnetics is increasing in implant dentistry. Purpose : This study is to know the effect of permanent magnetics on bone matrix formation of osteoblasts. Materials and methods : The konus abutment-shaped permanent magnetics were connected to the implant fixture, and placed on the culture plate. The osteoblast-like cell Mc3T3E1 were used for cell culture. As the control group, the implants were connected to titanium healing caps, and cultured in the same conditions of experimental group. After 3. 7, 14 days, cells were cultured, and we measured and compared the amount of collagen type I, osteocalcin, which is bone matrix protein by Western immunoblotting analysis. Results: As a result of Western immunoblotting analysis for estimating the amount of bone extracellular matrix, there was no difference between osteoblast of the experimental group and the control group during 3 and 7day-osteoblast culturing. However when cells were cultured for 14days, the amount of bone extracellular matrix was increased, on the experimental group. Conclusion: From these results, magnetic field of permanent magnetics might have effect on bone formation of osteoblast, especially at initial stage of implant placement. Therefore, their clinical application for implant or bone graft could be possible.

Evaluation of calcium sulphate barrier to collagen membrane in intrabony defects

  • Budhiraja, Shilpa;Bhavsar, Neeta;Kumar, Santosh;Desai, Khushboo;Duseja, Sareen
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.237-242
    • /
    • 2012
  • Purpose: The aim of this study was to clinically and radiographically evaluate and compare treatment of intrabony defects with the use of decalcified freeze-dried bone allograft in combination with a calcium sulphate barrier to collagen membrane. Methods: Twelve patients having chronic periodontal disease aged 20 to 50 years and with a probing depth >6 mm were selected. Classification of patient defects into experimental and control groups was made randomly. In the test group, a calcium sulphate barrier membrane, and in control group, a collagen membrane, was used in conjunction with decalcified freeze-dried bone graft in both sides. Ancillary parameters as well as soft tissue parameters along with radiographs were taken at baseline and after 6 months of surgery. Parameters assessed were plaque index, modified gingival index, probing depth, relative attachment level, and location of the gingival margin. A Student's t-test was done for intragroup and a paired t-test for intergroup analysis. Results: Intragroup analysis revealed statistically significant improvement in all the ancillary parameters and soft tissue parameters with no statistically significant difference in intergroup analysis. Conclusions: The study concluded that a calcium sulphate barrier was comparable to collagen membrane in achieving clinical benefits and hence it can be used as an economical alternative to collagen membrane.

The Effect of Fibrillar Collagen on Bony Healing of Calvarial Defect in Rats (골 조직 치유과정에서 Collagen 막의 효과)

  • Kim, Jae-Bung;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.355-373
    • /
    • 1999
  • Many researches have been reported that collagen as cellular stroma, matrix of grafting materials, mediator of agents for the purpose of promoting healing process invivo, but the responses in vivo were seen various. The goal of this experiment is to assess the effect of collagen on bony healing, through histological evaluation of implanted collagen on the calvarial defect in rats. 2-month-old Sprague-Dawley, 24 rats were used and 12 rats assigned to each group of control and test. Defect of 5mm in diameter was made on the calvarial bone with trephine bur. Following thorough saline rinse, defect of control group was left in empty and that of experimental group was filled with fibrillar collagen($COLLATAPE^{(R)}$, COLLA-TEC. INC. U.S.A.) soaked in saline. 3 rats in each group were sacrificed at 3, 7, 14, 21 days after operation respectively, and the tissue blocks were prepared for light microscope with H-E for evaluation of overall healing, with TRAP(tartrate resistant acid phosphatase) for evaluation of osteoclastic activity and with immunohistochemical staining for macrophages. The results were as follows : 1. In the control group, inflammatory responses were disappeared at day 14, but, in the experimental group inflammatory infiltrates were reduced at day 21. Thus, the experimental group showed more severe soft tissue inflammation than control group. 2. Both control and experimental group showed slight appositional growth at day 7 and gradual bony growth to 21th day. But, complete bony healing of the defect was not shown. There was no significant difference in bony healing between control and experimental group 3. Specific response of macrophages for implanted collagen was observed at day 14 in the experimental group. In conclusion, although fibrillar collagen caused inflammation of soft tissue during initial healing period, inflammatory responses by fibrillar collagen didn't inhibit bony regeneration and implanted collagen was biodegradaded by macrophages. Thus, we expect that fibrillar collagen can be used for useful mediator of graft materials or growth factors.

  • PDF

Periodontal regenerative therapy in endo-periodontal lesions: a retrospective study over 5 years

  • Oh, Soram;Chung, Shin Hye;Han, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.2
    • /
    • pp.90-104
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate clinical and radiographic changes and the survival rate after periodontal surgery using deproteinized bovine bone mineral (DBBM) with 10% collagen or DBBM with a collagen membrane in endo-periodontal lesions. Methods: A total of 52 cases (41 patients) with at least 5 years of follow-up were included in this study. After scaling and root planing with or without endodontic treatment, periodontal regenerative procedures with DBBM with 10% collagen alone or DBBM with a collagen membrane were performed, yielding the DBBM + 10% collagen and DBBM + collagen membrane groups, respectively. Changes in clinical parameters including the plaque index, bleeding on probing, probing pocket depth, gingival recession, relative clinical attachment level, mobility, and radiographic bone gains were evaluated immediately before periodontal surgical procedures and at a 12-month follow-up. Results: At the 12-month follow-up after regenerative procedures, improvements in clinical parameters and radiographic bone gains were observed in both treatment groups. The DBBM + 10% collagen group showed greater probing pocket depth reduction ($4.52{\pm}1.06mm$) than the DBBM + collagen membrane group ($4.04{\pm}0.82mm$). However, there were no significant differences between the groups. Additionally, the radiographic bone gain in the DBBM + 10% collagen group ($5.15{\pm}1.54mm$) was comparable to that of the DBBM + collagen membrane group ($5.35{\pm}1.84mm$). The 5-year survival rate of the teeth with endo-periodontal lesions after periodontal regenerative procedures was 92.31%. Conclusions: This study showed that regenerative procedures using DBBM with 10% collagen alone improved the clinical attachment level and radiographic bone level in endo-periodontal lesions. Successful maintenance of the results after regenerative procedures in endo-periodontal lesions can be obtained by repeated oral hygiene education within strict supportive periodontal treatment.

TISSUE CHANGE AFTER EMBEDDING GELATIN MATRIX IMPLANT(FFIBREL®) IN SUBCUTANEOUS TISSUE OF RATS;HISTOLOGIC, IMMUNOHISTOCHEMICAL AND SCANNING ELECTRON MICROSCOPIC STUDY (백서의 피하조직에 Gelatin Matrix Implant (Fibrel®) 매식시 조직변화에 관한 연구)

  • Kim, Hong-Jin;Lee, Chong-Heon;Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.4
    • /
    • pp.341-354
    • /
    • 1998
  • GMI (Fibrel${(R)}$) is one of the dermal filling substances which have been successfully used for the treatment of depressed cutaneous scar and wrinkles. It's major components are; Gelatin powder, which provides a framework for the clot to form and remains stable under the scar, and ${\varepsilon}$-aminocaproic acid, which inhibits the production of fibrinolysin, and Plasma, which provides the necessary ingredients for collagen synthesis. GMI has advantages of low immunogenicity and increased longevity. It has been known to induce fibroblast activity and promote new collagen synthesis. We used 34 Sprague-Dawley rats which were bred under the same condition and duration. 18 of experimental animals were undergone cardiac puncture, and their blood were collected, centrifugated, and stored in freezer. Out of 16 animals, control group were injected with 2ml plasma into the subcutaneous tissue of Lt. scapular, while experimental group were implanted of 2 ml GMI into the Rt. same area. Experimental animals were sacrificed at the 3rd day, 5th day, 1st week and 2nd week respectively after implantation of GMI. To observe the histopathologic change of GMI and surrounding tissue reaction of GMI, we had examined with H&E staining, immunohistochemical staining with vimentin, ${\alpha}$-SMA, S-100 under LM and SEM. The obtained results were as follows ; 1. In LM study, the inflammatory cell infiltrations and granulation tissue formation were observed, and muscle tissues were well attached with adipose tissues in the control group. In the experimental group, inflammatory cell infiltrations had been observed by the 2nd week and irregular adipiose tissues and well differentiated mesenchymal tissues were examined. 2. In immunohistochemical study, the experimental group of ${\alpha}$-SMA study, there were a prominent positive response on endothelial development of granulation tissues and mesenchymal tissues compare with the control group. In vimentin study, positive response on mescenchymal fibroblast continued to 2nd week, but negative in the control group. In S-100 study, both groups were positively responded on irregular adipose tissues. 3. In SEM study, collagen fibers were embedded by the plasma by the 5th day in the control group, and in the 3rd day experiment GMI were resorved but communited with collagen fiber till the 1st week. Collagen fibers were infilt-rated into GMI at the 2nd week and the infilltrated GMI were conglomerated with the mature adipose cells and the collagen fibers. From the above results, GMI implantation in the subcutaneous tissue of Sprague-Dawley rat, the mild infiltration of inflammatory cells were showed till 2nd week and the granulation tissues were observed. GMI were nearly resorbed till 2nd week, but well attached with adipose tissue and collagen fibers. The endothelium and fibroblasts were actively proliferated. Adipose tissues and mesenchymal tissue cells were observed. As already expressed, GMI showed resorptive change in course of time without any early immune reaction, and seemed to induce fibroblast activity and promote new collagen synthesis.

  • PDF

Biological effects of a root conditioning agent for dentin surface modification in vitro

  • Lee, Jue-Yeon;Seol, Yang-Jo;Park, Jang-Ryul;Park, Yoon-Jeong;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.257-264
    • /
    • 2010
  • Purpose: Connective tissue reattachment to periodontally damaged root surfaces is one of the most important goals of periodontal therapy. The aim of this study was to develop a root conditioning agent that can demineralize and detoxify the infected root surface. Methods: Dentin slices obtained from human teeth were treated with a novel root planing agent for 2 minutes and then washed with phosphate-buffered saline. Smear layer removal and type I collagen exposure were observed by scanning electron microscopy (SEM) and type I collagen immunostaining, respectively. Cell attachment and lipopolysaccharides (LPS) removal demonstrated the efficiency of the root conditioning agent. Results: SEM revealed that the smear layer was entirely removed and the dentinal tubules were opened by the experimental gel. Type I collagen was exposed on the surfaces of the dentin slices treated by the experimental gel, which were compared with dentin treated with other root planing agents. Dentin slices treated with the experimental gel showed the highest number of attached fibroblasts and flattened cell morphology. The agar diffusion assay demonstrated that the experimental gel also has effective antimicrobial activity. Escherichia coli LPS were effectively removed from well plates by the experimental gel. Conclusions: These results demonstrated that this experimental gel is a useful tool for root conditioning of infected root surfaces and can also be applied for detoxification of ailing implant surface threads.

The effect of overlaying titanium mesh with collagen membrane for ridge preservation

  • Lim, Hyun-Chang;Lee, Jung-Seok;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.4
    • /
    • pp.128-135
    • /
    • 2015
  • Purpose: The aim of this study was to determine the effect of overlaying titanium mesh (TM) with an adjunctive collagen membrane (CM) for preserving the buccal bone when used in association with immediate implant placement in dogs. Methods: Immediate implant placements were performed in the mesial sockets of the third premolars of five dogs. At one site the TM was attached to the fixture with the aid of its own stabilizers and then covered by a CM (CM group), while the contralateral site received only TM (TM group). Biopsy specimens were retrieved for histologic and histomorphometric analyses after 16 weeks. Results: All samples exhibited pronounced buccal bone resorption, and a high rate of TM exposure was noted (in three and four cases of the five samples in each of the TM and CM groups, respectively). A dense fibrous tissue with little vascularity or cellularity had infiltrated through the pores of the TM irrespective of the presence of a CM. The distances between the fixture platform and the first bone-implant contact and the bone crest did not differ significantly between the TM and CM groups. Conclusions: Our study suggests that the additional use of a CM over TM does not offer added benefit for mucosal healing and buccal bone preservation.

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.6
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

Effect of polydeoxyribonucleotide with xenogeneic collagen matrix on gingival phenotype modification: a pilot preclinical study

  • Hyun-Chang Lim;Chang-Hoon Kim;Han-Kyu Lee;Gyewon Jeon;Yeek Herr;Jong-Hyuk Chung
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.417-428
    • /
    • 2023
  • Purpose: To investigate the effect of xenogeneic collagen matrix (XCM) with polydeoxyribonucleotide (PDRN) for gingival phenotype modification compared to autogenous connective tissue graft. Methods: Five mongrel dogs were used in this study. Box-type gingival defects were surgically created bilaterally on the maxillary canines 8 weeks before gingival augmentation. A coronally positioned flap was performed with either a subepithelial connective tissue graft (SCTG) or XCM with PDRN (2.0 mg/mL). The animals were sacrificed after 12 weeks. Intraoral scanning was performed for soft tissue analysis, and histologic and histomorphometric analyses were performed. Results: One animal exhibited wound dehiscence, leaving 4 for analysis. Superimposition of STL files revealed no significant difference in the amount of gingival thickness increase (ranging from 0.69±0.25 mm to 0.80±0.31 mm in group SCTG and from 0.48±0.25 mm to 0.85±0.44 mm in group PDRN; P>0.05). Histomorphometric analysis showed no significant differences between the groups in supracrestal gingival tissue height, keratinized tissue height, tissue thickness, and rete peg density (P>0.05). Conclusions: XCM soaked with PDRN yielded comparable gingival augmentation to SCTG.