• 제목/요약/키워드: Collagen birefringence

검색결과 4건 처리시간 0.013초

Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall

  • Ji, Hyo Jin;Park, Se-Hee;Cho, Kyung-Mo;Lee, Suk Keun;Kim, Jin Woo
    • Restorative Dentistry and Endodontics
    • /
    • 제42권2호
    • /
    • pp.111-117
    • /
    • 2017
  • Objectives: Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. Materials and Methods: The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Results: Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. Conclusions: In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA.

Interplay of collagen and mast cells in periapical granulomas and periapical cysts: a comparative polarizing microscopic and immunohistochemical study

  • Deepty Bansal;Mala Kamboj;Anjali Narwal;Anju Devi;Nisha Marwah
    • Restorative Dentistry and Endodontics
    • /
    • 제47권1호
    • /
    • pp.12.1-12.11
    • /
    • 2022
  • Objectives: This pilot study aimed to establish the interrelationship between collagen and mast cells in periapical granulomas and periapical cysts. Materials and Methods: An observational cross-sectional study was conducted on the paraffin-embedded tissue sections of 68 specimens (34 periapical granulomas and 34 periapical cysts). The specimens were stained with picrosirius to observe collagen fiber birefringence and anti-tryptase antibody to evaluate the mast cell count immunohistochemically. The mean number and birefringence of collagen fibers, as well as the mean number of mast cells (total, granulated, and degranulated), and the mean inflammatory cell density were calculated. The data obtained were analyzed using the Kruskal Wallis test, Mann Whitney U test, and Spearman correlation test (p < 0.05). Results: The mean number of thick collagen fibers was higher in periapical cysts, while that of thin fibers was higher in granulomas (p = 0.00). Cysts emitted orange-yellow to red birefringence, whereas periapical granulomas had predominantly green fibers (p = 0.00). The mean inflammatory cell density was comparable in all groups (p = 0.129). The number of total, degranulated, and granulated mast cells exhibited significant results (p = 0.00) in both groups. Thick cyst fibers showed significant inverse correlations with inflammation and degranulated mast cells (p = 0.041, 0.04 respectively). Conclusions: Mast cells and inflammatory cells influenced the nature of collagen fiber formation and its birefringence. This finding may assist in the prediction of the nature, pathogenesis, and biological behavior of periapical lesions.

Microscopic Imaging of Articular Cartilage using Polarization-Sensitive Optical Coherence Tomography

  • Lee Sang-Won;Oh Jung-Taek;Kim Beop-Min
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권1호
    • /
    • pp.37-42
    • /
    • 2005
  • We construct and test the polarization-sensitive optical coherence tomography (PS-OCT) system for imaging porcine and human articular cartilages. PS-OCT is a new imaging technology that provides information regarding not only the tissue structures but tissue components that show birefringence such as collagen. In this study, we measure the cartilage thickness of the porcine joint and the phase retardation due to collagen birefringence. Also, we demonstrate that changes of the collagen fiber orientation could be detected by the PS-OCT system. Finally, differences between normal and damaged human articular cartilage are observed using the PS-OCT system, which is then compared with the regular histology pictures. As a result, the PS-OCT system is proven to be effective for diagnosis of the pathology related to the cartilage. In the future, this technology may be used for discrimination of the collagen types. When combined with endoscope technologies, the PS-OCT images may become a useful tool for in vivo tissue testing.

A Mueller Matrix Study for Measuring Thermal Damage Levels of Collagenous Tissues

  • Jun, Jae-Hoon
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.310-317
    • /
    • 2006
  • Extensive research with polarimetry and Mueller matrix has been done for chemical measurements and possible cancer detection. However, the effect of thermally denatured biological tissue on polarization changes is not well known. The purpose of this study is to characterize polarization changes in collagen due to thermal denaturation. The variations in polarized state caused by thermal damage were investigated by obtaining the Mueller matrix elements of collagen sample at multiple thermal damage levels. The changes in birefringence of denatured collagen were also investigated. This information could be used to determine the extent of thermal damage level of clinically heat treated tissues.