• Title/Summary/Keyword: Collaborative inference

Search Result 15, Processing Time 0.021 seconds

Automatic TV Program Recommendation using LDA based Latent Topic Inference (LDA 기반 은닉 토픽 추론을 이용한 TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.270-283
    • /
    • 2012
  • With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.

An Analysis of Media of Social Studies 1 Textbooks for the Middle School with the Information Processing Model (정보처리모형을 이용한 중학교 『사회 1』 교과서 수록 매체 분석)

  • Song, Gi-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.5-27
    • /
    • 2019
  • The purpose of this study is to analyze the media of middle school social studies 1 textbooks with the information processing model and to suggest educational information services of teacher librarians under a collaborative Instruction. For this purpose, 1,089 inquiry tasks embedded in 8 types of textbooks for middle school social studies developed under the 2015 revised curriculum were analyzed. The media as an input element was analyzed by the type and the characteristic as a processing element was analyzed by the cognitive behavior types. And the aspect of the output factor of the media utilized the multiple intelligences. As a result of the analysis, the media in the inquiry task solving process mainly consisted of visual media based on photographs and illustrations and general reading materials. The processing method of media is understanding through analysis and inference through structuring. And the output utilized speaking and writing of the language intelligence. Based on the results, it is shown that educational information services that teacher librarians could provide for inquiry activities are composed of developing curriculum map, teaching inquiry processing and skills, and designing work sheets with graphic organizer and multiple intelligences under the information processing steps.

Study Level Inference System using Education Video Watching Behaviors (학습동영상 학습행위 기반의 학습레벨 추론시스템)

  • Kang, Sang Gil;Kim, Jeonghyeok;Heo, Nojeong;Lee, Jong Sik
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.371-378
    • /
    • 2013
  • Video-demand learning through E-learning continuously increases on these days. However, not all video-demand learning systems can be utilized properly. When students study by education videos not matched to level of their own, it is possible for them to lose interest in learning. It causes to reduce the learning efficiency. In order to solve the problem, we need to develop a recommendation system which recommends customized education videos according the study levels of students. In this paper, we estimate the study level based on the history of students' watching behaviors such as average watching time, skipping and rewinding of videos. In the experimental section, we demonstrate our recommendation system using real students' video watching history to show that our system is feasible in a practical environment.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.