Collaborative filtering is a popular technique for recommender systems and used in many practical commercial systems. Its basic principle is select similar neighbors of a current user and from their past preference information on items the system makes recommendations for the current user. One of the major problems inherent in this type of system is data sparsity of ratings. This is mainly caused from the underlying similarity measures which produce neighbors based on the ratings records. This paper handles this problem and suggests a new similarity measure. The proposed method takes users rating patterns into account for computing similarity, without just relying on the commonly rated items as in previous measures. Performance experiments of various existing measures are conducted and their performance is compared in terms of major performance metrics. As a result, the proposed measure reveals better or comparable achievements in all the metrics considered.
Hyun Sil Moon;Jung Hyun Yoon;Il Young Choi;Jae Kyeong Kim
Asia pacific journal of information systems
/
제27권2호
/
pp.126-138
/
2017
The proliferation of items increased the difficulty of customers in finding the specific items they want to purchase. To solve this problem, companies adopted recommender systems, such as collaborative filtering systems, to provide personalization services. However, companies use only meaningful and essential data given the explosive growth of data. Some customers are concerned that their private information may be exposed because CF systems necessarily deal with personal information. Based on these concerns, we analyze the effects of the amount of information on recommendation performance. We assume that a customer could choose to provide overall information or partial information. Experimental results indicate that customers who provided overall information generally demonstrated high performance, but differences exist according to the characteristics of products. Our study can provide companies with insights concerning the efficient utilization of data.
추천 시스템은 전자 상거래 시에 고객들의 상품 선택의 편의를 제공하므로 반드시 구비되어야 할 기능이다. 협력 필터링은 다른 사용자들이 선호하였던 상품이나 현 사용자가 과거 선호하였던 상품들을 위주로 추천 리스트를 제공하는 기법으로서, 가장 널리 활용되는 대표적 기법이다. 최근 딥러닝 인공지능 기술을 활용하여 추천 시스템의 성능 향상을 달성하는 연구가 활발히 진행되고 있다. 본 연구에서는 사용자가 부여한 평가등급만을 이용하여 딥러닝 기술의 일종인 제한 볼츠만 기계 학습을 통해 협력 필터링 기반의 추천 시스템을 개발한다. 또한 학습의 효율성과 성능을 위하여 학습 파라미터 변경 알고리즘을 제시한다. 제안 시스템의 성능 평가를 위하여 실험 분석을 통해 기존의 다양한 전통적 협력 필터링 기법들과 비교 분석을 실시하였으며, 제안 알고리즘은 기본적인 제한 볼츠만 기계 모델보다 우수한 성능을 가져오는 것으로 확인되었다.
The Collaborative Filtering (CF) is one of the popular techniques for personalization in e-commerce storefronts. For CF-based recommendation, every customer needs to provide subjective evaluation ratings for some products based on his/her preference. Also, if an e-commerce site recommends a new product, some customers should rate it. However, there is no in-depth investigation on the impacts on recommendation performance of two number of ratings, i.e. the number of ratings of an individual customer and the number of ratings of an item, even though these are important factors to determine performance of CF methods. In this study, using publicly available EachMovie data set, we empirically investigate the relationships between the two number of ratings and the performance of CF. For the purpose, three analyses were executed. The first and second analyses were performed to investigate the relationship between the number of ratings of a particular customer and the recommendation performance of CF. In the third analysis, we investigate the relationship between the number of ratings on a particular item and the recommendation performance of CF. From these experiments, we can find that there are thresholds in terms of the number of ratings below which the recommendation performances increase monotonically. That is, the number of ratings of a customer and the number of ratings on an item are critical to the recommendation performance of CF when the number of ratings is less than the thresholds, but the value of the ratings decreases after the numbers of ratings pass the thresholds. The results of the experiments provide insight to making operational decisions concerning collaborative filtering in practice.
It is becoming more and more difficult to cope with new knowledge and technology required by society by the efforts of one person or organization according to the development of science and technology. As a method to overcome this, collaborative research is becoming important. This tendency is increasing in the government R&D projects as well, and the 'A' test research institute, which is the subject of this paper, is also increasing a collaborative research. The purpose of this study is to analyze the network characteristics among the participating researchers in the government R&D project conducted by the institution A, and to ascertain how the network characters of the researchers actually affect the financial performance of the team. The results of the analysis show that 'closeness centrality' and 'degree of centrality' contribute positively to the financial performance of the team. On the other hand, 'betweenness centrality' and 'eigenvector centrality' have a negative effect on the financial performance of the team because they are not directly related to financial performance.
최근 협력 시스템에 대한 연구가 증가되면서 협력 작업에 대한 연구와 더불어 협력 시스템 보안에 대한 연구가 중요시되고 있다. 협력 시스템에서 인증 및 암호화의 경우 기존의 정책을 사용하여 시스템의 견고성을 유지할 수 있다. 그러나 접근 제어 정책에서 기존의 정책을 그대로 사용하게 되는 경우 분산 환경, 개방된 네트워크, 다양한 주체와 객체의 존재로 인하여 협력 시스템은 신분, 직무, 그룹, 보안등급, 무결성 등급, 허가권을 포함해야 하는 다양한 접근상황을 고려해야 된다. 이 경우, 낮은 보안 등급의 주체가 높은 보안 등급의 객체로 접근을 허용 하거나, 높은 보안 등급의 주체가 낮은 보안 등급의 객체로 접근을 막아야 하는 복합적 상황을 해결하지 못한다. 더욱이 모든 접근상황을 제어하기 위하여 객체에 여러 접근제어 요소를 포함하여 접근 제어를 알고리즘화 할 경우 불필요한 상황을 모두 고려해야 하기 때문에 시스템의 성능 저하를 야기 시킨다. 이 같은 문제를 해결하기 위하여, 본 논문에서는 협력 시스템의 특징에 맞는 새로운 접근제어 프레임워크를 제안한다. 제안된 접근제어의 특징은 주체 및 객체에 다수의 접근 요소를 정의하여 기존 정책 보다 협력시스템과 같은 복합적인 상황에서 용이하게 적용되도록 하였다. 그리고 객체의 종류를 접근될 요소의 특징에 따라 세 가지로 구분하였고, 구분된 각 객체의 특징에 따라 알고리즘이 구현됨으로 빠르고 원활한 협력 작업이 수행되도록 하였다. 또한, 접근 요소 및 정책 변경이 용이하도록 확장성을 고려하였다. 모의실험 결과 다수의 접근 요소를 사용하였지만 시스템 성능은 접근 제어 정책을 적용하지 않았을 때와 큰 차이를 보이지 않았으며 복합적인 상황의 접근제어에서도 확실한 접근 제어가 가능했다.
In the new web based learning environment which has recently emerged, a variety of new learning objectives and teaching methods suited to this learning environment have been adopted. Recently, web based project-based learning methods have received a great deal of attention from those wishing to improve learning performance. The objective of this study is to identify the impact of characteristics of communication media and instruction behavior on collaborative interaction and project performance through web based group projects. The characteristics of communication media were divided into richness, flexibility, and ease of use, and the characteristics of instruction behavior were divided into support and expression, which are independent variables. Collaborative interaction as a mediate variable, was divided into information sharing and negotiation. Project performance was the dependent variable. To verify the proposed research model empirically, an experiment was conducted in which learners participated in on-line and off-line courses with group projects. The group project was conducted virtual product development(VPD), and designed a web-site about the VPD. At the end of the project, a survey was conducted. Of the 270 students, 239 responded. The students were assigned to groups of 3 or 4 members, and represented different genders and levels of computer competence. The reliability, validity, and correlation of research variables were analyzed using SPSS 14.0, and the measurement model and the structural goodness-of-fit of the research model were verified through SEM analysis using Lisrel 8.54. We found important results as follows; First, richness and ease of use has positive impacts on each of sharing information and negotiation. This suggests that richness and ease of use are useful in sharing information which is related to the task and agreeing in opinions among group members. However, flexibility has not positive impacts on sharing information and negotiation. This implies that there is no great difference in performance of PC and information literacy of user. Second, support and expression of instructor have positive impacts on sharing information and negotiation. This indicates that instructors play an important role in encouraging learners to participate in the project and communicating with them, sharing information related to the project, making a resonable decision and finally leading them to improve a project performance. Third, collaborative interaction has a positive impact on project performance. This result shows that if the ability to share information and negotiate among students was improved then a project performance would be improved as well. Recently, in the state of revitalized web based learning, it is opportune that web-based group project is practically conducted, and the impact of characteristics of communication media and characteristics of instruction behavior on sharing information, negotiating among group members and improving a project performance is verified. On the basis of these results, we propose that forms of learning, such as web based project, could be one of solution which is to enforce interaction among learners, and ultimately improve learning performance. Moreover web-based group project is able to make up for a weakness which makes it difficult to make interpersonal relations or friendship among learners in computer mediated communication or web based learning.
In this paper, we propose how to improve the lack of diversity in collaborative filtering, using tag scores contained in items rather than ratings of items. Collaborative filtering has excellent performance among recommendation system, but it is evaluated as lacking diversity. In order to solve this problem, this paper proposes a method for supplementing diversity lacking in collaborative filtering by using tags. By using tags that can be used universally without using the characteristics of specific articles in a recommendation system, The proposed method can be used.
Collaborative filtering, among other recommender systems, has been known as the most successful recommendation technique. However, it requires the user-item rating data, which may not be easily available. As an alternative, some collaborative filtering algorithms have been developed recently by utilizing the market basket data in the form of the binary user-item matrix. Viewing the recommendation scheme as a two-class classification problem, we proposed a new collaborative filtering scheme using a regularized discriminant analysis applied to the binary user-item data. The proposed discriminant model was built in terms of the major principal components and was used for predicting the probability of purchasing a particular item by an active user. The proposed scheme was illustrated with two modified real data sets and its performance was compared with the existing user-based approach in terms of the recommendation precision.
Journal of information and communication convergence engineering
/
제17권2호
/
pp.135-141
/
2019
Collaborative filtering algorithms often encounter data sparsity issues. To overcome this issue, auxiliary information of relevant items is analyzed and an item attribute matrix is derived. In this study, we combine the user-item attribute preference with the traditional similarity calculation method to develop an improved similarity calculation approach and use weights to control the importance of these two elements. A collaborative filtering algorithm based on user-item attribute preference is proposed. The experimental results show that the performance of the recommender system is the most optimal when the weight of traditional similarity is equal to that of user-item attribute preference similarity. Although the rating-matrix is sparse, better recommendation results can be obtained by adding a suitable proportion of user-item attribute preference similarity. Moreover, the mean absolute error of the proposed approach is less than that of two traditional collaborative filtering algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.