• Title/Summary/Keyword: Cold-rolling

Search Result 409, Processing Time 0.03 seconds

Deformation and Recrystallization of INCONEL 690 (인코넬 690의 변형 및 재결정)

  • 표은종;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.167-171
    • /
    • 1995
  • The formation of preferred orientations in cold rolled and recrystallized Inconel 690 sheets was studied by the x-ray texture measurements and TEM observations. The increasing{220} pole intensity in the plane normal at the higher reductions was related to the{110}<112> texture component. The rolling texture of the Inconel 690 was the pure metal type. THe dislocation cells were found in the near{110}<112> oriented grains. The onset of deformation twins in the {112}<111>oriented grains. The onset of deformation twins in the {112}<111> oriented grains. The onset of deformation twins in the {112}<111> oriented grains caused the weakening of {112}<111> and the development of {552}<115> in the rolling texture. The annealing texture of the Inconel 690 sheets was dependent on the annealing temperature. The annealing texture of 750$^{\circ}C$ annealed sheets was similar to the cold rolling texture. The major preferred orientations of the 950$^{\circ}C$ annealed specimens were {112}<110> and {001}<110>. The formation of fine and closely spaced annealing twins in the specimen annealed at 1150$^{\circ}C$ led to the randomization of the annealing texture.

  • PDF

Thickness Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간 압연시스템의 두께제어)

  • 김승수;김종식;황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.248-254
    • /
    • 1996
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate significantly the effect of roll eccentricity in multivariable cold-rolling processes. Fundamental problems such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap mearsurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. And, LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that eccentricity components have been significantly eliminated and simultaneously other distrubances also have been attenuated.

  • PDF

Development of Microstructure and Texture in Cold Rolled INCONEL690 (냉간압연된 인코넬 690에서 미세조직과 집합조직의 발달)

  • 안재평;표은종;허무영
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.392-400
    • /
    • 1994
  • The formation of preferred orientations in the cold rolling texture of the Inconel 690 sheets was studied by the x-ray texture measurements and TEM observations. The increasing {220} pole intensity in the plane normal at the higher reductions was related to the {110}<112> texture component. The rolling texture of the Inconel 690 was the pure metal type which could be described by {112}<111>, {123}<634> and {110}<112> orientations. The dislocation cells were found in the near {110}<112> oriented grains. The onset of deformation twins in the {112}<111> oriented grains caused the weakening of {112}<111> and the development of {552}<115> in the rolling texture.

  • PDF

An-isotropic Corrosion Behavior of A Marine Steel with Cold Rolling

  • Yang, So E.;Song, Churl H.;Choi, Ga Yeon;Choi, Yong;Choe, Jin I.;Jung, Hwan G.;Kho, So W.;Lee, Chang S.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.330-330
    • /
    • 2012
  • Microstructure of a marine steel with a modified AISI-1004 composition was controlled by cold rolling and heat treatment, which corrosion behavior in an artificial sea water was electrochemically determined for the each deformation direction. The lowest corrosion rate of the surface normal to the rolling direction is related t the (111) fiber structure. Additional annealing at $550^{\circ}C$ for 24 hours improves the corrosion rate which is related to re-crystallization and reduction of (111) concentration.

  • PDF

Influence of Ag Addition on the Mechanical Properties and Electrical Conductivity of Cu-Mg-P Alloys (Cu-Mg-P 합금의 기계적 성질과 전기전도도에 미치는 Ag첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.10-16
    • /
    • 2010
  • The microstructure of Cu-Mg-P alloy sheet consisted of Cu matrix and very fine MgP precipitate, and it has been observed that the microstructure remains virtually unchanged by Ag additions up to 2%. Ag solutes were dissolved into the matrix and hardly found in the precipitates. The hardness increased with increase of the Ag content, while the conductivity slightly decreased. Strain hardening through cold rolling was found to be effective in improving the hardness, especially in high-Ag alloys. Aging treatment was conducted either before the first cold rolling or between the first and the final cold rolling, and the conductivity was significantly higher at the former case, regardless of the Ag content. Softening of Cu-Mg-P alloy sheet was remarkable above $400^{\circ}C$ and the Ag content did not show any significant effect on it.

Cold Rolling Process for the Matrix Fabrication of the Mcfc (용융탄산염형 연료전지의 전해질 매트릭스에 관한 연구)

  • Park, Sang-Kill;Rho, Chang-Joo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Electrolyte matrix fabrication process can be classifed as hot pressing, tape casting, callendering, electrophoretic deposition. however, these have limits in practice. Hot pressing is cumbersome method, because of careful heating and cooling. Furthermore, the perfected tile is so fragile that it is difficult to fit in a cell. Therefore this method is not adequate for mass production of the electrolyte matrix. Using electrophoretic deposition method, a very thin matrix can be made, but many attempts of the electrolyte embeding were found to be failure. Tape casting and callendering methods are employed in most of the matrix fabrication for the present. But these methods require lots of water as a solvent, so that coating of the LiAlO sub(2) with electrolyte is difficult. Recently, hot roll milling method has been developed and the perfected matrix was proved to be free from crack. The method, however, needs a roller to make a matrix and a perfected matrix is carefully striped off from the cooled roller. Therefore, this method requires a long time due to the cooling process. The author proposes a cold rolling process. On this method, heated slurry of the LiAlO sub(2) mixed with binder, is rolled with a cold roller. The heated slurry dose not adhere to the roller, since contacted hot slurry is rapidly solidified. Therefore fabrication speed is increased, without getting rid of merits of the hot rolling process.

  • PDF

The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy (Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향)

  • Kang, C.Y.;Eom, J.H.;Kim, H.J.;Sung, J.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill (유성압연기를 사용한 동관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Han, Ki-Beom;Kim, Kwan-Woo;Choe, Jong-Woong;Kim, Jae-Hun;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.303-309
    • /
    • 2010
  • Copper tube rolling process using the planetary rolling mill has been studied by using finite element method. This rolling is process that makes copper tube by three-roll with mannesmann method. Also, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in copper tube rolling. Rolling process for copper tube was successfully simulated and it should be useful to determine optimal rolling condition.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF