• Title/Summary/Keyword: Cold-regulated gene

Search Result 36, Processing Time 0.028 seconds

Genetic Transformation of Chrysanthemum with Cold Regulated Gene (BN115) (저온저항성 유전자를 이용한 국화 형질전환)

  • Han, Soo-Gon;Choi, In-Young;Kang, Chan-Ho;Ko, Bok-Rai;Choi, Joung-Sik;Lee, Wang-Hyu
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • With the use of Agrobacterium and gene-gun, cold regulated gene (BN115) has been injected in Chrysanthemum leaf disc and transgenic plants have been produced successfully on the selection media containing phytohormone. To determine the presence of the transferred cold regulated gene (BN115) in the transgenic Chrysanthemum, PCR-amplification indicated the presence of that gene. Real-Time PCR for confirmation of the putative transgenic plants was established. The copy number of cold regulated gene (BN115) is extrapolated on the basis of a standard curve. Serial dilutions of known number of gene copies were in triplicates. In this diagram, PCR cycles are plotted against the fluorescence intensity. The cycle at which the fluorescence reaches a threshold cycle is inversely proportional to the starting amount of target DNA.

Identification and Isolation of Differentially Expressed Gene in Response to Cold Stress in a Green Alga, Spirogyra varians (Zygnematales)

  • Han, Jong-Won;Yoon, Min-Chul;Lee, Key-Pyoung;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2007
  • The expression of genes responding to cold stress in a freshwater alga, Spirogyra varians, was studied by using differential expression gene (DEG) method. A gene strongly up-regulated in 4°C was isolated and designated as SVCR2 (Spirogyra varians cold regulated) gene. The cDNA encoding SVCR2 was cloned using λZAP cDNA library of Spirogyra varians. The deduced amino acid had a sequence similarity with trans-membrane protein in Arabidopsis thaliana (Q9M2D2, 52.7%). Northern blot analysis demonstrated that transcript level of SVCR2 increased about 10 fold under low temperature (4°C), compared with that cultured at warm (20°C) conditions. The expression of SVCR2 was also affected by light conditions. When the plants were exposed to high light (HL) (1200 μmol photon m–2 s–1), the expression of SVCR2 began within 2 hrs. This gene expression lasted for 4 hrs and decreased afterwards. Under the blue light (470 nm) condition, the expression of this gene was induced in same way as HL treatment, even under less than 100 μmol photon m–2 s–1. But red light (650 nm) and UV-A irradiation did not affect the expression of SVCR2.

Resposes of Two Cold - Regulated Genes, BN28 and BN115, in Field -Grown Canola (Brassica napus L.) (포장에서 케놀라 저온반응성 유전자 발현)

  • Moontae, Song
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 1995
  • Cold acclimation involves changes in gene expression. BN28 and BN115 are two genes which are regulated by cold temperature and assumed having roles in cold acclimation. The objectives of this experiment was to explore the expression of BN28 and BN115 under field conditions. Six winter cultivars were planted at three different dates during the fall. The expression of the genes was determined by northern blot analysis of total RNA taken from leaves 15 to 30 day-intervals after planting. The expression of the two genes was detected within 15 days after planting well before onset of freezing tolerance in plants. This suggestes either their expression was a prerequisite of the freezing tolerance or their expression was regulated by other environmental factors as well as temperature. Two genes showed a different expression pattern suggesting they had a different regulatory system. Although timecourse increase in expression of the cold-regulated genes was matched with increase in freezing tolerance, the difference of expression in cultivar level at specific times of measurement was not correlated with freezing tolerance at the moment.

  • PDF

Transformation of Lettuce (Lactuca sativa L.) Using Cold Regulated Gene (BN115) (저온 관련 유전자를 이용한 상추 (Lactuca sativa L.)의 형질전환)

  • 정재훈;양덕춘;장홍기;백기엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • Explants of lettuce (Lactuca sativa L.) were co-cultivated with Agrobacterium tumifacience GV 3101 strain containing nptII gene and cold regulated gene (BN115) from Brassica napus for transformation. Multiple shoots were obtained from the explants in the selection medium (MS basal medium supplemented with 100 mg/L kanamycin, 500 mg/L carbenicillin, 0.1 mg/L NAA, 0.5 mg/L kinetin) after 3 to 4 weeks of co-culture. The putative transgenic shoots were transferred to rooting medium (1/2 MS basal medium supplemented with 100 mg/L kanamycin and 250 mg/L carbenicillin). The selected shoots were tested with PCR analysis using nptll, BN115 primers whether cold-regulated gene was introduced to genome of the plants. The vir G primers were particularly used to check contamination of Agrobacterium during PCR analysis. The nptII and BN115 primers produced the specific PCR bands in the putative transgenic lines but the vir G primers did not. These results confirmed that the PCR products were not the result of contamination with Agrobacterium. Additionally the Southern analysis of the PCR products and RT-PCR analysis proved that the cold-regulated gene was successfully integrated and transcribed in the putative transgenic lettuce plants.

  • PDF

Comparative Transcriptome Analysis Reveals Differential Response of Phytohormone Biosynthesis Genes in Glumous Flowers of Cold-Tolerant and Cold-Sensitive Rice Varieties Upon Cold Stress at Booting Stage

  • Park, Myoung Ryoul;Kim, Ki-Young;Tyagi, Kuldeep;Baek, So-Hyeon;Yun, Song Joong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Low temperature stress is one of the major negative factors affecting vegetative and reproductive growth of rice. To better understand responses of rice plants to low temperature we analyzed transcriptome expression patterns in glumous flower of cold-tolerant japonica rice variety, Stejaree45, and cold-susceptible variety, HR19621-AC6 at booting stage under cold water irrigation. A total of 2,411 probes were differentially expressed by low temperature in glumous flowers of the two varieties. Some important genes involved in hormone biosynthesis showed variety-specific regulation. Expression of GA20ox3 and GA2ox, among the genes involved in GA biosynthesis, was regulated differentially in the two varieties. Among the genes involved in IAA biosynthesis, YUCCA1 and TAA1:1 showed variety-specific regulation. Among the genes involved in cytokinin biosynthsis and signaling, expression of LOG, HK1 and HK3 was significantly down-regulated only in the cold-susceptible variety. Among the genes involved in ABA biosynthesis, NSY and AAO3 were down-regulated only in the cold-tolerant variety. In general, genes involved in GA, IAA and cytokinin biosynthesis responded to cold temperature in such a way that capacity of those bioactive hormones is maintained at relatively higher levels under cold temperature in the cold-tolerant variety, which can help minimize cold stress imposed to developing reproductive organs in the cold-tolerant variety.

Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Nogoy, Kim Margarette Corpuz;Sun, Jianfu;Sun, Bin;Wang, Ying;Tang, Lin;Yu, Jia;Jin, Xin;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.919-933
    • /
    • 2021
  • We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.

Characterization of an Abiotic Stress-inducible Dehydrin Gene, OsDhn1, in Rice (Oryza sativa L.)

  • Lee, Sang-Choon;Lee, Mi-Yeon;Kim, Soo-Jin;Jun, Sung-Hoon;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.212-218
    • /
    • 2005
  • A full-length 1.1 kb cDNA, designated Oryza sativa Dehydrin 1 (OsDhn1), was isolated from the seed coat of rice. The deduced protein is hydrophilic and has three K-type and one S-type motifs (SK3-type), indicating that OsDhn1 belongs to the acidic dehydrin family, which includes wheat WCOR410 and Arabidopsis COR47. Expression of OsDhn1 was strongly induced by low temperature as well as by drought. Induction of OsDhn1 by cold stress was clearcut in the roots of seedlings and the epidermis of palea and lemma. OsDhn1 was also up-regulated in UBI::CBF1/DREB1b transgenic plants indicating that it is regulated by the CBF/DREB stress signaling pathway.

Analysis of Structure and Expression of Grapevine 2-oxoglutarate Oxygenase Genes in Response to Low Temperature

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.46-54
    • /
    • 2016
  • 2-Oxoglutarate (2OG) acts as a signaling molecule and plays a critical role in secondary metabolism in a variety of organisms, including plants. Six 2-oxoglutarate (2OG) and Fe(II) oxygenase (2OGO) genes, VlCE2OGO1 [Vitis labruscana 2-oxoglutarate (2OG) and Fe(II) oxygenase 1], VlCE2OGO2, VlCE2OGO3, VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6, which show different expression patterns upon transcriptome analysis of 'Campbell Early' grapevine exposed to low temperature for 4 weeks, were analyzed for their structure and expression. Comparison of the deduced amino acid sequences of the 2OGO genes from the V. labruscana transcripts revealed sequence similarities of 38.6% (VlCE2OGO1 and VlCE2OGO2) to 19.2% (VlCE2OGO2 and VlCE2OGO3). The lengths of these genes ranged from 1053 to 2298 bp, and they encoded 316 to 380 amino acids. The prediction of the secondary structure of the encoded proteins by Self-Optimized Prediction Method with Alignment (SOPMA) indicated that all the genes contained alpha helix (23.95 to 41.71%), extended strand (16 to 22.34%), beta turn (6.65 to 9.22%), and random coil (32.97 to 51.58%) in the analysis. Specific primers from unique regions in each gene obtained by alignment of nucleotide sequences were used in real time PCR for analysis of gene expression. All tested genes showed differential expression in grapevines exposed to low temperature. Of the six transcripts, VlCE2OGO1, VlCE2OGO2, and VlCE2OGO3 were up-regulated and VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6 were down-regulated in response to cold treatments at all tested time points. The 2OG genes can be used for elucidation of mechanisms of tolerance to cold and as valuable molecular genetic resources for selection in breeding programs for cold-hardy grapevines.

The characterization of transgenic Chrysanthemum under low temperature condition (저온저항성 유전자가 도입된 국화 형질전환체 특성)

  • Choi, In-Young;Han, Soo-Gon;Kang, Chan-Ho;Song, Young-Ju;Lee, Wang-Hyu
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-61
    • /
    • 2008
  • Previous studies on genetic transformation of chrysanthemum using cold regulated gene (BN115) have been conducted and the PCR and Real-Time PCR based method to determine the presence of the transferred cold regulated gene in the chrysanthemum was established. To check whether over-expression of BN115 gene in transgenic chrysanthemum will enhance their tolerance to cold stress, the transgenic chrysanthemum were grown under low temperature condition and several cold signalling including growth characteristics, stoma size and shape, SPAD value and ion leakage test were investigated. The transgenic chrysanthemum in the low temperature growth chamber grow much faster in term of the height, number and size of the leaves than those of wild-type plants and damage of transgenic plant caused by the low temperature was much less than that of wild-type plants. The stoma type and size of transgenic plant leaves grown at $5^{\circ}C$ were much similar to of wild-type plant cultured on $25^{\circ}C$ It has been found that SPAD value of transgenic plants was much higher than those of wild-type, but the EC density being lower under low temperature condition.

Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis

  • Liu, Shaoli;Ma, Yimiao;Zheng, Yi;Zhao, Wen;Zhao, Xiao;Luo, Tianqi;Zhang, Jian;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10℃ and 37℃, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.