• 제목/요약/키워드: Cold-Stress

검색결과 878건 처리시간 0.033초

파밤나방(Spodoptera exigua(Hubner))의 내한성유기 관련인자 분석 (Physiological factors affecting rapid cold hardening of the beet armyworm, Spodoptera exigua(Hubner))

  • 송원례;김용균;조점래;김홍선;이정운
    • 한국응용곤충학회지
    • /
    • 제36권3호
    • /
    • pp.249-255
    • /
    • 1997
  • 파밤나방(Spodoptera exigua(Hubner))은 아치사온도($5^{\circ}C$, 2시간)에 노출된 뒤에는 빙점이하의 저온에서 내한성이 증가하였으며 내한성 및 내한성유기는 집단별로 차이가 났다. 파밤나방의 내한성에 관한 생리현상을 분석하기 위해서 내한성이 다른 집단들의 내한성유기, 체내글리세롤 함량, 혈림프의 몰 삼투압 농도, 체내빙결점, 저온유기단백질을 분석하였다. 처리된 5령충은 혈림프의 삼트압 및 체내글리세롤 함량의 뚜렷한 증가를 보였다. 이들 상승효과는 서로 다른 집단간 차이를 보였다. 아치사온도에서 유기되는 저온유기단백질은 10~20 kD에서 특이적으로 발현되었으며 체내빙결점의 변화는 나타나지 않았다.

  • PDF

Genome-wide association study of cold stress in rice at early young microspore stage (Oryza sativa L.).

  • Kim, Mijeong;Kim, Taegyu;Lee, Yoonjung;Choi, Jisu;Cho, Giwon;Lee, Joohyun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.313-313
    • /
    • 2017
  • Cold stress is one of the most influenced factors to rice yield. In order to identify genes related to cold stress in fertility stage, genome-wide association study (GWAS) was conducted. Cultivated 129 rice germplasm were moved in the growth chamber under the condition of $12^{\circ}C/RH70%$(12h day/12h night when the rice plant was grown in 10 DBH(days before heading). Also, rice plant as control was moved in the green house under condition of $28^{\circ}C/RH70%$(12h day/12h night). After 4 days the plants were moved in a greenhouse. The fertility of rice plant were monitored after the grain were fully grown. The most tolerant rice germplasm to cold stress were Cheongdo-Hwayang-12 and IR38 as 63.1 and 61.8 of fertility and the most recessive rice germplasm were Danyang38 and 8 rice germplasm as 0. As a result of GWAS with re-sequencing data and fertility after cold treatment germplasm using genome association and prediction integrated tool (GAPIT), 99 single-nucleotide polymorphisms (SNPs) were observed by applying a significance threshold of -logP>4.5 determined by QQ plot. With SNPs region, 14 candidate genes responded to cold stress in fertility stage were identified.

  • PDF

Cold Stress가 노화(老化) 흰쥐 심근(心筋)에 미치는 영향(影響) (Effect of Cold Stress on Myocardium of Aging Rat)

  • 김정기;정형재;이용덕;박원학
    • Applied Microscopy
    • /
    • 제28권1호
    • /
    • pp.21-38
    • /
    • 1998
  • The present study was performed to determine the effect of cold stress on myocardium of aging rat. Control groups, which aged 6, 12 and 24 months, were compared with age-matched experimental groups that were exposed to moderate cold stress for a hours daily in a week at laboratory cold room $(4{\pm}1^{\circ}C)$. The histological, histochemical and ultrastructural changes of myocardium were observed. The results were summarized as follow: 1. Age-dependent histological change of control groups was observed the formation of contraction band in 24months aged group. The experimental groups submitted to cold stress showed a similar change pattern as seen in control groups. However, the degree of change in the experimental groups was significantly larger than that of control groups. In the 34 months aged group the formation of hypercontraction band was observed. 2. Regarding age-dependent histochemical changes of control groups, we observed the increase activities of PAS and Masson's trichrome. In experimental groups the activities of PAS and Masson's trichrome were also increased with age. Compare with control group, the activities of PAS was increased but the activities of Masson's trichrome was decreased. 3. Age-dependent ultrastructural changes on vacuolization, lysosome were observed. In control groups the structural changes occur at 12 months. The accumulation of lipofuscin, contraction band, hypercontraction band and a component of connective tissue were observed in 24 months. However, the degree of change in the experimental groups was significantly larger than that of control groups. In contract, the myelin body in intercalated discs was observed in 24 months of experimental groups.

  • PDF

Effects of loading conditions and cold joint on service life against chloride ingress

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.319-326
    • /
    • 2018
  • RC (Reinforced Concrete) members are always subjected to loading conditions and have construction joints when constructed on a big scale. Service life for RC structure exposed to chloride attack is usually estimated through chloride diffusion test in sound concrete, however the test is performed without consideration of effect of loading and joint. In the present work, chloride diffusion coefficient is measured in concrete cured for 1 year. In order to evaluate the effect of applied load, cold joint, and mineral admixtures, OPC (Ordinary Portland Cement) and 40%-replaced GGBFS (Ground Granulated Blast Furnace Slag) concrete are prepared. The diffusion test is performed under loading conditions for concrete containing cold joint. Investigating the previous test results for 91 days-cured condition and the present work, changing diffusion coefficients with applied stress are normalized considering material type and cold joint. For evaluation of service life in RC continuous beam with 2 spans, non-linear analytical model is adopted, and service life in each location is evaluated considering the effects of applied stress, cold joint, and GGBFS. From the work, varying service life is simulated under various loading conditions, and the reduced results due to cold joint and tensile zone are quantitatively evaluated. The effect of various conditions on diffusion can provide more quantitative evaluation of chloride behavior and the related service life.

초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구 (Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray)

  • 이재철;안성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.

비조질강의 냉간 성형공정에 따른 성형하중 및 금형응력 해석 (Forming load and stress analysis according to cold forming process of microalloyed forging steel)

  • 이승헌;김지훈;박남기;이영선;서동우;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2004
  • The forming load and the stress applied to dies during cold forming of automotive part using microalloyed forging steel are examined with finite element analysis. The forming load and the stress applied to dies at each process step are investigated for two types of forming process. The changes in forming process significantly affect the variation of firming load and the stress at each process step, thus it is considered that the die lift will be remarkably changed with the type of forming process, therefore optimal process design is necessary to obtain an increased the die life and to make the die life uniform at each process step.

  • PDF

Cloning, Characterization, and Functional Analysis of Maize DEHYDRIN2

  • Paek, Nam-Chon;Jung, Hun-Ki
    • 한국작물학회지
    • /
    • 제47권2호
    • /
    • pp.116-122
    • /
    • 2002
  • Dehydrins (LEA Dll proteins) are one of the typical families of plant proteins that accumulate in response to dehydration, cold stress, abscisic acid, or during seed maturation. A 1.3-kb cDNA was cloned from a cDNA expression library of 5-day-old germinating maize scutellums under drought stress. The deduced protein sequence indicated a dehydrin gene encoding SK$_3$ LEA protein typically expressed during cold acclimation, but not by drought stress in barley and wheat. Thus, it was named maize DEHYDRIN2 (ZmDhn2). It accumulates rapidly and highly in drought-stressed scutellum and leaf tissues at any stage, but not under cold stress. ZmDhn2 gene was transformed into Arabidopsis thaliana for functional analysis under drought condition. From electrolyte leakage test, no significant difference showed between wild type and transformants under normal growth condition, but the leakage level of electrolyte in wild type plants was about 3 times as high as that in the transformed plants under drought stress. It suggests that ZmDHN2 playa role in increasing drought tolerance.

인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가 (Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions)

  • 문진만;권성준
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.481-488
    • /
    • 2016
  • 콘크리트는 공용기간동안 구조물 자체의 자중 및 이동 하중에 따른 응력을 받게 되며, 이러한 응력은 구조적인 거동뿐 아니라 내구적인 거동에도 영향을 준다. 대단위 콘크리트 부재의 시공은 시공이음을 요구하는데, 면처리 불량 또는 이어치기의 지연에 의해 콜드조인트가 발생하게 된다. 이러한 콜드조인트는 전단력에 취약할 뿐 아니라 염화물 확산성에도 영향을 미친다. 본 연구에서는 응력조건과 콜드조인트가 콘크리트의 염화물 확산에 미치는 영향을 정량적으로 평가하였다. 콜드조인트를 가진 콘크리트는 인장하중 수준이 30%에서 60%로 커질 때, 확산계수는 꾸준하게 증가하여 건전부와 큰 차이를 보이지 않았다. 그러나 압축부에서는 하중재하 30% 수준부터 콜드조인트 콘크리트에서 염화물 확산계수가 크게 증가하여 확산계수가 170% 이상 증가하였다. 이러한 특성은 압축하중을 받는 건전부 콘크리트와 큰 차이가 있으므로 이음부를 가지는 콘크리트의 내구성 설계에 주의가 필요하다.

인접홀에서 홀확장법과 체결력 고려시, 발생하는 잔류응력 분포에 대한 유한요소해석 (Finite Element Analysis of Residual Stress by Cold Expansion Method with Clamping Force in the Plate having Adjacent Holes)

  • 양원호;조명래;장재순
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.149-154
    • /
    • 2006
  • The cold expansion method (CEM) is one of the widely used a method to improve the fatigue behavior of materials in aerospace industry. Such improvement is due to the compressive residual stress developed when a tapered mandrel goes through the fastener holes a little smaller than the mandrel. CEM is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Many researchers are studied a finite element analysis of residual stress around fastener hole. But in case of real model, fastener hole has a clamping force after CE. Therefore, it is respected that residual stress distributions should be changed due to clamping forces. In this paper, it was performed finite element analysis of residual stress by clamping force after CE in the plate having adjacent holes. From this study, it has been found that compressive residual stress near the hole increases according to clamping force. Also, the more increase clamping force, the more increases compressive residual stress. However, tensile residual stress increase beyond clamping force area.