• Title/Summary/Keyword: Cold resistant mutant

Search Result 3, Processing Time 0.017 seconds

Improved Plant Growth from Seed Bacterization Using Siderophore Overproducing Cold Resistant Mutant of Pseudomonas fluorescens

  • Katiyar, Vandana;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.653-657
    • /
    • 2004
  • The cold resistant mutants of P. fluorescens strain $PRS_{9}$ and ATCC13525 were developed which could grow equally well at $28^{\circ}C$ and $10^{\circ}C$. All the mutants were tested for siderophore production, of which $CRPF_9$ (ATCC13525 mutant) was selected, as there was a 16.8-fold increase when compared to its wild-type. Under in vitro conditions, $CRPF_9$ showed better growth promotion both in wheat (29.1% increase in root length) and mung bean (51.5% increase in root length) at $10^{\circ}C$. Greenhouse trials showed a significant increase in root (13.84cm) and shoot (15.0cm) length of $CRPF_9$-treated mung bean seeds, indicating increased rhizocompetence of the mutant. Ferric citrate was a better iron source than ferric hydroxide for plant growth.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Studies of cold resistant glycine betaine effect on cold sensitive Bacillus subtilis mutant strains (저온 민감성 바실러스 서브틸리스 돌연변이 균주에서 glycine betaine의 저온 내성에 미치는 영향에 대한 연구)

  • Kim, Do Hyung;Lee, Sang Soo
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.200-207
    • /
    • 2018
  • At high salt concentration, glycine betaine is transported into Bacillus subtilis and growing rate of the cell is not suppressed. Also according to recent studies, cell growth is maintained normal growth rate at low temperature. Low temperature results in a stress response of Bacillus subtilis that is characterized by strong repression of major metabolic activities such as translation machinery and membrane transport. In this regards, genes showing cold sensitive phenotype are cold-induced DEAD box RNA helicases (ydbR, yqfR) and fatty acid desaturases (bkdR, des). Therefore to understand the effect of glycine betaine on cold growth of Bacillus subtilis, we investigated the effect of glycine betaine on growth rate of these deletion mutants showing cold sensitive phenotype. Glycine betaine strongly stimulated growth of wild type Bacillus subtilis JH642 and deletion mutants of ydbR and yqfR at $20^{\circ}C$ (190~686 min $T_d$ difference). On the other hands, glycine betaine does not show growth promoting effects on deletion mutants of bkdR, and des at cold conditions. Same cold protectant growth results were shown with the precursor choline instead of glycine betaine. We investigated the effects of detergents on the cell membrane in bkdR and des deficient strains associated with cell membrane. It was identified that bkdR deficient strain shows retarded growth with detergent such as Triton X-100 or N-lauryl sarcosine compared with wild type cell. Thus, it is possible that deletion mutation of bkdR modifies membrane structure and effects on transport of glycine betaine.