• Title/Summary/Keyword: Cold heat source

Search Result 128, Processing Time 0.024 seconds

Self-sustainable Operation of a 1kW class SOFC System (1kW급 고체산화물 연료전지 발전시스템 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

Characteristic of Electric Generation for the Water Flow Rate in Thermoelctric Generator Using Hot Water (온수를 이용한 열전발전기에서 유량변화에 따른 발전 특성)

  • Woo, Byung-Chul;Lee, Hee-Woong;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1333-1340
    • /
    • 2002
  • The objective of this study is to develop a thermoelectric generation system which converts unused energy from close-at-hand sources such as garbage incineration heat and industrial exhaust etc. into electricity. This paper presents applicability of a commercially available thermoelectric generator f3r waster heat recovery. The test facility consists of water heater, pump, thermoelectric module and aluminium tubes and hot and cold water is used as heat source and sink fluids. It is shown that the three components of thermoelectric research exist in manufacturing a thermoelectric generator. The first component is fabrication of thermoelectric materials, the second is manufacturing of thermoelectric generator with 32 thermoelectric modules. The last one is characteristic measuring of thermoelectric generator with 32 thermoelectric modules of two types, cooling and power purpose. It was found that the rate of cold and hot water is 25 and 37 liter per minute and the maximum power of thermoelectric generator is 28Watts and its efficiency is 1.04%.

Feasibility Study on Modified OTEC (Ocean Thermal Energy Conversion) by Plant Condenser Heat Recovery (발전소 복수기 배열회수 해양온도차 발전설비 적용타당성 검토)

  • Jung, Hoon;Kim, Kyung-Yol;Heo, Gyun-Young
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • The concept of Ocean Thermal Energy Conversion (OTEC) is simple and various types of OTEC have been proposed and tried. However the location of OTEC is limited because OTEC requires $20^{\circ}C$ of temperature difference as a minimum, so most of OTEC plants were constructed and experimented in tropical oceans. To solve this we proposed the modified OTEC which uses condenser discharged thermal energy of existing fossil or nuclear power plants. We call this system CTEC (Condenser Thermal Energy Conversion) as this system directly uses $32^{\circ}C$ partially saturated steam in condenser instead of $20{\sim}25^{\circ}C$ surface sea water as heat source. Increased temperature difference can improve thermal efficiency of Rankine cycle, but CTEC should be located near existing plant condenser and the length of cold water pipe between CTEC and deep cold sea water also increase. So friction loss also increases. Calculated result shows the change of efficiency, pumping power, net power and other parameters of modeled 7.9 MW CTEC at given condition. The calculated efficiency of CTEC is little larger than that of typical OTEC as expected. By proper location and optimization, CTEC could be considered another competitive renewable energy system.

An Experimental Study on Sea Water Freezing behavior in a Rectangular vessel Cooled From Above (구형용기의 상부면 냉각에 의한 해수 동결거동의 실험적 연구)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.529-537
    • /
    • 1998
  • Currently as due to the rapid development of industry and increase in population we meet serious problems concerning the shortage and pollution of water. In the country many experts predict a shortage of water approaching 450 million tons by the year 2006. To cope with this serious problem it is necessary to construct desalination plants. In the adoption of a desalination system the most important factor is the cost of fresh water production,. In general LNG is stored in a tank as a liquid state below $-162^{\circ}C$. When it is serviced, however the LNG absorbs energy from a heat source and transforms to a high pressure gaseous state. During this process a huge amount of cold energy accumulated in cooling LNG is wasted. This wasted cold energy can be utilized to produce fresh water by using a sea water freezing desalination system. In order to develop a sea water freezing desalination system and to establish its design technique qualitative and quantitative data regarding the freezing behavior of sea water is required in advance, The goals of this study are to reveal the freezing behavior of sea water is required in advance. The goals of this study are to reveal the freezing mechanisms of sea water to measure the freezing rate and to investigate the freezing heat-transfer characteristics,. The experimental results will provide a general understanding of sea water freezing behavior in a rectangular vessel cooled from above.

  • PDF

Open-Source Hardware Module Application for Remote Monitoring of Disaster Prevention (재난관리 원격 모니터링용 오픈소스 하드웨어 모듈 응용)

  • Jin, Kyung-Chan;Lee, Eun-Ju;Lee, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.299-305
    • /
    • 2015
  • Since the natural disasters such as floods, droughts, heat wave and cold wave are increasing, the need for risk management is necessary to minimize the damage with utilizing IT technology. Also, the monitoring services of disaster response type have been developed and applied. Recently, the open source hardware based on the signal of the sensor, or the monitoring studies have been carried. In this paper, by analyzing a low-cost open source hardware platform such as Beagle board, we examine the utilization of the hardware-based module for sensor monitoring.

Ventilation Rate Impact on Heating and Cooling Energy Consumption in Residential Buildings : Concentrated on a Detached House in Cold and Hot/Humid Climatic Zones of USA (환기량의 주거건물 냉난방에너지 소비에 대한 영향 : 미국 한랭기후 및 고온다습기후의 단독주택을 중심으로)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.747-753
    • /
    • 2011
  • The purpose of this study was to quantify the impact of the ventilation rate on heating and cooling energy consumption in a detached house. For it, a series of simulations for the application of the diverse ventilation rate (ACH) were computationally conducted for a prototypical detached residential building in the cold climate (Detroit, Michigan) and hot/humid climate (Miami, Florida) of USA. Analysis revealed that ventilation is a significant heat losing source in the cold climate; thus, the higher ventilation rate significantly increases the heating energy consumption and energy cost in the cold climate; while the impact on energy increase for heating and cooling energy consumption is similar in hot/humid climate with less significancy compared to cold climate. The research outcome of this study could be a fundamental data for determining the optimal ventilation rate in terms of indoor air quality, but also building energy performance well.

Electron beam weldability of Niobium (니오븀의 전자빔 용접성)

  • An, Byung-Hun;Yoon, Jong-Won;Kim, Sook-Hwan
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • Electron beam (EB) weldability of pure grade Nb sheet was studied. One of Nb sheets was as-annealed and the other was cold rolled. Microstructures, Vickers hardness, and transverse weld tensile test were carried out for the base metal, the heat affected zone (HAZ) and weld metal. In the case of the EB welds made using the annealed Nb sheeet, fine equiaxed grains and coarse grains were dominant at the base metal and the HAZ, respectively, and columnar grains were observed at the weld metal. For the EB welds made using the cold rolled Nb sheet, elongated grains in the rolling direction at the base metal, and the microstructures of the weld metal and the HAZ are similar to those of the EB welds made using the annealed Nb sheet, respectively. For both annealed and cold rolled Nb sheet, the width of the HAZs are unusually wide in spite of using high density heat source, i.e. electron beam, and the grain sizes of both HAZs are similar. When tensile test was carried out using the transverse weld specimens, the failure occurred at the HAZ for both EB welds made using Nb sheets annealed and cold rolled, respectively and the tensile strengths of both specimens were 161MPa. Vickers hardness of EB welds made using annealed Nb was 56-57 Hv at both base metal and weld metal, 52-53 Hv at the HAZ. On the other hand, Vickers hardness of EB welds made using cold rolled Nb was 97-99 Hv at the base metal, but the hardness values of weld metal were similar to those obtained at the weld metal of annealed Nb.

  • PDF

Development of Heat Pump System for High Efficiency Engine Vehicle (고효율엔진 차량 히트펌프 시스템 개발)

  • Park, Byung-Duck;Won, Jong-Phil;Lee, Won-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • As DDI or GDI engine discharges very low heat due to its high thermal efficiency, the heat source is not enough for heating the passenger compartment in cold climate condition. To remedy the heating problem, the conventional HFC-134a automotive air-conditioning system has been attempted to run as a heat pump mode. Futhermore, an auxiliary electric heater of new type was equipped to the heat pump air-conditioning loop as a new approach. Hence, a proto-type heat pump air conditioner has been made and tested to investigate the feasibility of the HFC-134a automobile air-conditioning system that could be worked as a heat pump. The experiment results showed that the sufficient heating capacity could be obtained by adding a heat pump with an new electric type auxiliary heater into the conventional heat core in low temperature condition.

  • PDF

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.