• Title/Summary/Keyword: Cold hardness

Search Result 307, Processing Time 0.028 seconds

Experimental Study on the Magnetic and Mechanical Properites in a Cold Rolled Steel (냉간압연강판의 자기 및 기계적특성에 관한 실험적연구)

  • Kim, Chung-Kyun;Kim, Chong-Eok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.103-107
    • /
    • 1989
  • The effects of annealing temperature on the magnetic properties (maximum permeability, coercive force and remanence) and mechanical properties (hardness, tensile strength and elongation at rupture) were analyzed using the nondestructive impulsive magnetic analyzer in a medium carbon cold rolled steel sheet. This nondestructive method was very useful for the analysis of magnetic and mechanical properties of materials. As it was known in the literature, the three distinct processes that indicate the recovery, recrystallization, and grain growth of a metal were measured with the non-destructive analyzer.

  • PDF

A study on working limit of cold forging of carbon steel (냉간단조에 있어서 탄소강의 가공한계에 관한 연구)

  • Jae, Jin-Soo;Kang, Jong-Hun;Kang, Seong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1081-1088
    • /
    • 1997
  • The purpose of this work is to investigate the working limit of carbon steel and forging condition of cold forging. The fracture criteria which was proposed by Oyane and Osakada was used. Compression test, hardness study and tension test by Oyane's creteria, microstructure study by Osakada's were carried out. The results were compared with each other. It was found that working limit on compressive hydrostatic stress is increased in comparison with that of tensile stress field and can be forecasted the fracture limit of closed cold forging.

A Study on Coolant and Roughness Variation in the Cold Rolling (냉간압연 가공시 압연유와 조도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1149-1157
    • /
    • 1995
  • The research for variation of coolant film thickness and separating force has been investigated following the examination for friction profile of work roll and roughness change of strip surface in rolling mill producting actual commercial products. The obtained results are as follows ; (1) Coolant film thickness in cold rolling has been increased relative to the circumferential velocity of work roll, and formation of coolant films has decreased with the smaller diameter of work roll. (2) Separating force is related to the formation of coolant film, and large separating force is needed to the formation of coolant film but it is constant after formation of appropriate film. (3) Wear and roughness alleviation of work roll is larger in bottom-roll than in top-roll on cold surface is larger in the direction of width than in roll direction, and changes of roughness and strip surface hardness rarely occurred after 3 passes.

A Study on Heat Treatment for Improving Cold Forgeability of a Bearing Steel, SUJ2 (베어링강 SUJ2의 냉간 단조성 향상을 위한 열처리에 관한 연구)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • In this paper, the effect of heat treatment on forgeability is investigated and an improved heat treatment cycle is proposed for the bearing steel, SUJ2. An application example of a bearing inner race cold forging, which has small cracks in the bottom after backward extrusion and piercing, is found from a cold forging industry. The process is evaluated by finite element analysis and several heat treatment cycles are examined in order to propose an improved heat treatment cycle. The effect of heat treatment on material hardness and tool life, dimensional accuracy and forming load is revealed through experiment.

  • PDF

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

Application of Ultrasonic Vibration Energy on Eco-superfinishing and Surface Hardening Treatment of Cold Work Roller (초음파 진동에너지를 이용한 냉간 압연롤러 표면의 환경 친화적 초정밀 사상 및 표면 경화 처리 및 시험)

  • Y.S. Pyoun;Park, J.H.;C.H. Han;Park, Y.;I.S. Cho;N. Azuma;Lee, J.H.;Kim, C.S.;Park, C.H.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.39-39
    • /
    • 2002
  • In order to improve wear and fatigue resistance of the structural materials, especially cold work roller for 304 stainless steel, an eco-super-finishing and surface hardening treatment using ultrasonic vibration energy was developed and applied to the SKD-ll roller. The eco-super-finishing machine was designed and fabricated by DesignMecha Co, by its own technology. It was observed that the surface roughness, hardness and residual stress were changed from $Ra{\;}={\;}O.25\mu\textrm{m}$, Hv=710 and ${\sigma}$={\;}+400{\;}MPa{\;}to{\;}Ra{\;}={\;}0.165\mu\textrm{m}$, Hv = 1200 and ${\sigma}=-610$ MPa after 20 KHz micro-cold forging, which means almost equal to the 300 % improvement of life-time.

  • PDF

Study on the tensile restraint crack characteristics in underwater welds of marine steel plates (선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

Analysis in Microstructures and Co Volume of WC Powder According to the Lifespan of WC-Co Molds for Cold Forging (냉간단조용 WC-Co 금형의 수명에 미치는 WC 분말의 미세구조 및 Co 부피 분율의 분석)

  • Jeongseok Oh;Jini Park;Sang-yeob Lee;Choong-Heui Chung;Jeong-muk Choi;Joon sik Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.270-276
    • /
    • 2023
  • In this study, we analyzed two types of cold forging dies commonly used for manufacturing general nuts and screws to investigate the differences in WC powder according to the lifespan. For both Type I and Type II dies, it was observed that as the lifespan of the molds increases, the area fraction of Co becomes larger and the size of the powder becomes smaller. Moreover, there is a trend where the strength also increases as the lifespan gets longer. Actually, the hardness value of the sample with the longest lifespan is ~ 131 HV higher than the specimen of the shortest lifespan, It is noted that the reduction in toughness of the WC-Co mold is caused by insufficient Co and the decrease in contact surface area of WC-Co results in a reduced bonding surface area. The lifespan of cold-working WC molds increases when the W content and the volume fraction of WC are high, and the size of the WC powder is small. The results can significantly enhance producing high-quality molds with an extended lifespan using WC powder for cold forging.

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding (냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질)

  • Sang-Hyeon Jo;Seong-Hee Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.

Microstructures and hardness of model niobium-based chromium-rich cast alloys

  • Berthod, Patrice;Ritouet-Leglise, Melissa
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • Niobium is a candidate base for new alloys devoted to applications at especially elevated temperatures. Elaborating and shaping niobium-based alloys by conventional foundry may lead to mechanically interesting microstructures. In this work a series of charges constituted of pure elements were subjected to high frequency induction melting in cold crucible to try obtaining cast highly refractory Nb-xCr and Nb-xCr-0.4 wt.%Calloys(x=27, 34 and 37 wt.%). Melting and solidification were successfully achieved. The as-cast microstructures of the obtained alloys were characterized by electron microscopy and X-ray diffraction and their hardness were specified by Vickers macro-indentation. The obtained as-cast microstructures are composed of a body centered cubic (bcc) niobium dendritic matrix and of an interdendritic eutectic compound involving the bcc Nb phase and a $NbCr_2$ Laves phase. The obtained alloys are hard to cut and particularly brittle at room temperature. Hardness is of a high level (higher than 600Hv) and is directly driven by the chromium content or the amount of {bcc Nb - $NbCr_2$} eutectic compound. Adding 0.4 wt.% of carbon did not lead to carbides but tends to increase hardness.