• Title/Summary/Keyword: Cold forming process

Search Result 238, Processing Time 0.031 seconds

Forming load and stress analysis according to cold forming process of microalloyed forging steel (비조질강의 냉간 성형공정에 따른 성형하중 및 금형응력 해석)

  • Lee S.H.;Kim J.H.;Park N.K.;Lee Y.S.;Suh D.W.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.405-408
    • /
    • 2004
  • The forming load and the stress applied to dies during cold forming of automotive part using microalloyed forging steel are examined with finite element analysis. The forming load and the stress applied to dies at each process step are investigated for two types of forming process. The changes in forming process significantly affect the variation of firming load and the stress at each process step, thus it is considered that the die lift will be remarkably changed with the type of forming process, therefore optimal process design is necessary to obtain an increased the die life and to make the die life uniform at each process step.

  • PDF

A Study on Process Design of cold Forging for Inner Tooth Part (내부 치형 부품의 냉간단조 공정설계에 관한 연구)

  • 박준모;이현철;신동초;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper discusses process design of cold forging for inner tooth part, drum clutch. In respect to high productivity, low material consumption and low piece production costs, Metal forming has more merits than machining process. Net shape forming is huh technology which satisfies merits of metal forming and achieves high accuracy. Recently, net shape forming method widely applied because of high productivity, low material consumption and low piece production costs using press. In this study, the method which accuracy of drum clutch, automatic transmission pin, can be improved is discussed. First, process variables for process design of drum clutch are selected, and then process design is accomplished using forming analysis method. from forming analysis, forming load, stress, unfiling part is obtained. and comparing these results, optimal process design can be determined.

  • PDF

A Study on the Process Planning and Die Design of Cold-Forging Using Personal Computer(I) (퍼스널 컴퓨터에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구( I ))

  • 최재찬;김병민;진인태;김형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.712-720
    • /
    • 1988
  • This paper describes some development of computer-aided system called "COLD-FORMING" and "DESIGN-DIE". "COLD-FORMING" is designed for the forming sequence and "DESIGN-DIE" for the die design of press forming rotationally symmetric parts. The computer program developed is used in interactive and written in BASIC. Design rules for process planning and die design are formulated from process limitations, plasticity theory and know-how of experience of the field. "COLD-FORMING" capabilities include (1) analysis of forming sequence and recognition of individual operation involved each step, (2) determination of intermediate shape and dimensions, (3) calculation of forming loads to perform each forming operation and (4) graphic out put for the operation sheet. "DESIGN-DIE" capabilities include (1) optimum die design corresponding to the output of "COLD-FORMING" and (2) graphic output for the die design.of "COLD-FORMING" and (2) graphic output for the die design.ie design.

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Multi-Stage Cold Forging Process Design with A* Searching Algorithm (탐색 알고리즘을 이용한 냉간 단조 공정 설계)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

Process Sequence Design of Longneck Flange by Cold Extrusion Process (냉간압출을 이용한 롱넥 플랜지 성형에 대한 공정설계)

  • 임중연;황병복;김철식
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • This paper is concerned with the process sequence design of longneck flange forming by using cold extrusion with thick hollow pipe. The conventional hot forming process to produce a longneck flange is investigated by thermo-viscoplastic finite element method to observe the metal flow in detail and evaluate design requirements. Based on the results of simulation of the current hot forming process, design strategy for improving the process sequence are developed using the thick hollow pipe. The main goal is to obtain an appropriate improved process sequence which can produce the required product most economically without tensile cracking, workpiece buckling, and overloading of tools. Newly process condition such as semi-die angle, reductio ratio of cross-sectional area of axisymmetrical extrusion process. The final designed process can provide very useful guidelines to other flange forming industries.

  • PDF

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

Effect of the Design Parameter for Internal Spline Forming Using the Tube (중공축 내접 스플라인 성형을 위한 설계변수의 영향)

  • Wang, C.B.;Lim, S.J.;Park, Y.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.512-517
    • /
    • 2006
  • In this paper, the cold extrusion process for internal spline forming using a thin and long tube has been analyzed by using a rigid plastic finite element code. The internal spline consists of 10 tooths. The cold extrusion process has been focused on the comparisions of load-stroke relation and filling states of the teeth according to design parameters. The design parameters involve extrusion ratio, extrusion angle and friction factor. The internal spline forming can cause the buckling and folding during the cold extrusion process because of using a thin and long tube. The optimum design parameters have been obtained through rigid-plastic finite elements analysis. The extrusion ratio and extrusion angle have great effects on the deformation characteristics of the cold extrusion process.

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF

A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming (배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구)

  • Kim, H.S.;Jung, H.C.;Lee, Y.S.;Kang, S.H.;Lee, I.H.;Choi, S.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF