• Title/Summary/Keyword: Cold flakes

Search Result 3, Processing Time 0.018 seconds

An Experimental Study on Evaluation Methods for Scaling Resistance of Cement Concrete Pavement (시멘트 콘크리트 포장의 스케일링 저항성 평가방법에 관한 실험적 연구)

  • Lee, Hyeon-Gi;Oh, Hong-Seob;Sim, Jong-Sung;Shim, Jae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.30-38
    • /
    • 2015
  • In cold-climate regions, deicing agents is used for smooth traffic on the road due to freezing and snowdrift in winter. The use of de-icing salts has resulted in the accelerated scaling damage of concrete with salt damage under freezing and thawing condition. Scaling is the deterioration of concrete where in the paste-mortar structure delaminates in flakes from the surface of the concrete. Due to such damage, concrete pavement causes various problems such as early deterioration according to the decrease in the thickness of cover concrete and user's stability issues. Accordingly, various tests and evaluation methods have been suggested in order to evaluate these phenomena in other countries. However, there have been no regulations for the evaluation method in South Korea, and related studies are also very rare. Therefore, in this study, the evaluation methods proposed by each institution and country were investigated and the experiments were performed according to each regulation, followed by the comparison and analysis of the results. Furthermore, this study aims to suggest the optimized experimental method adopted to domestic field through the discussion of such experimental methods and results.

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.