• Title/Summary/Keyword: Cold emission

Search Result 221, Processing Time 0.037 seconds

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향)

  • Woo, Young-Min;Bae, Choong-Sik;Lee, Yong-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF

Development of O/D Based Mobile Emission Estimation Model (기종점 기반의 도로이동오염원 배출량 추정모형)

  • Lee, Kyu Jin;Choi, Keechoo;Ryu, Sikyun;Baek, Seung Kirl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.103-110
    • /
    • 2012
  • This study presents O/D based emission estimation model and methodology under cold- and hot-start conditions. Contrasting with existing link-based model, new model is able to estimate cold-start emissions with actual traffic characteristics. The results of the case study with new model show similar amount of emission with existing model under hot-start conditions, but five times much more than existing model under cold-start conditions. The annual social benefit estimated by this model is 56.2 hundred million won, which is 48% higher than the result from existing model. It means current green transportation policies are undervalued in terms of air quality improvement. Therefore, New model is expected to improve the objectivity of air quality evaluation results regarding green transportation policies and be applied in various transportation-environment policies.

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.

A Study on Engine-Out HC Emissions during Sl Engine Starting (전기점화 기관의 시동 시 미연탄화수소의 배출 특성 연구)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Engine-out HC emissions were investigated during cold and hot start. The tests were conducted according to engine cooling temperatures which were controlled by simulated coolant temperatures of cold and hot start, on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured at a exhaust port and cylinder head using Fast Response Flame Ionization Detector(FRFID). Unburned hydrocarbons emitted at the cold coolant temperature were much higher than those of the hot coolant temperatures. And the main source of the high HC emission was confirmed as misfire at cold coolant temperature. In addition, the effect of intake valve timing on engine-out HC emissions was investigated. The results obtained indicate that optimized intake phasing provides the potential for start-up engine-out HC emissions reduction.

Emission Reduction using Unburned Exhaust Gas Ignition (미연배기가스 점화 기술을 이용한 배기저감)

  • 김득상;강봉균;양창석;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation

COMPARISON OF HYDROCARBON REDUCTION IN A Sl ENGINE BETWEEN CONTINUOUS AND SYNCHRONIZED SECONDARY AIR INJECTIONS

  • Chung, S.-H.;Sim, H.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • Effect of secondary air injection (SAI) on hydrocarbon reduction has been investigated in a single cylinder Sl engine operating at cold-steady/cold-start conditions. The hydrocarbon emission and exhaust gas temperature with and without catalytic converter were compared with continuous and synchronized SAIs, which injected secondary air intermittently into exhaust port. Effects of SAI location, SAI pressure, SAI timing, and location of catalytic converter have been investigated and the results are compared for both SAls with base condition. At cold-steady condition, the rate of HC reduction increased as the location of SAI was closer to the exhaust valve for both synchronized and continuous SAls. The emission of HC decreased with increasing exhaust-A/F when it was rich, and was relatively insensitive when it was lean. The timing of SAI in synchronized SAI had significant effect on HC reduction and exhaust gas temperature and the synchronized SAI was found to be more effective in HC reduction and exhaust gas temperature compared to the continuous SAI . At cold-start condition, when the catalytic converter was located 20 cm downstream from the exhaust port exit, the catalytic converter warm-up period for both SAls decreased by about 50%, and the accumulated hydrocarbon emission during the first 120 s decreased about by 56% and 22% with the synchronized and continuous SAIs, respectively, compared to that of the base condition.

An Experimental Study on Hydrocarbon Emission Characteristics of Hydrogen Enriched LPG Fuel in a LPG Engine at Cold Start (LPG 기관의 수소 분사비율에 따른 냉간시동시 미연탄화수소 배출 특성에 관한 실험적 연구)

  • LEE, YEONGJAE;KIM, HYUNGKEUN;BANG, TAESEOK;LEE, JAEWOONG;CHO, YONGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in a LPG engine. An experimental study was carried out to obtain fundamental data for the emit HC emission characteristics at cold start of pre-mixed LPG and hydrogen in a LPG engine with various fractions of hydrogen-LPG blends. To maintain equal volume ratio of fuel blend, the amount of HC was decreased as hydrogen was gradually added. The results showed that as hydrogen increases, in-cylinder pressure increased. Also emission of unburned hydrocarbon (HC) is sharply decreased.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

A Study of HC Reduction with Hydrocarbon Adsorber Systems

  • Son, Geon-Seog;Yun, Seung-Won;Kim, Dae-Jung;Lee, Kwi-Young;Choi, Bung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1168-1177
    • /
    • 2000
  • Hydrocarbon adsorber is considered as a promising technology to reduce cold start HCs in automotive exhaust gas. In this study, three in-line adsorber systems were tried to reduce the cold start emission. To check the basic characteristics of adsorber converters, surface areas, TPD and TP A were examined after a hydrothermal aging. Also idle engine bench was used to find the adsorption and desorption capabilities of the adsorber systems at cold start. Finally a practicability of the adsorber systems for the LEV achievement was checked with FTP test on a 2.0 D MIT vehicle. The results of this study indicate that hydrocarbon adsorber system is one of the promising passive technologies to meet the ULEV regulation.

  • PDF

Emission Behavior of Screen Printed CNT Field Emitters for Advanced Lamp Application

  • Leer, Myoung-Bok;Kim, Dae-Jun;Song, Yoon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.691-692
    • /
    • 2009
  • Screen printable CNT pastes were formulated including conductive nano particles (CNPs) and their properties were investigated with an expectation of stable cold cathodes for advanced lamp application. CNT cathodes showed a turn-on field of 1~1.5V/um, a life time of ~100 hours at an emission current density of 10uA/$cm^2$ for DC-bias. Detailed analysis of measured I-V was carried out by applying Fowler-Nordheim model to trace down the origin of emission property degradation.

  • PDF