• Title/Summary/Keyword: Cold annealing

Search Result 193, Processing Time 0.024 seconds

BAF 소둔의 저온점 변화에 관한 연구

  • 김순경;이승수;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.327-331
    • /
    • 1997
  • As demand for various kinds and small lot products has been increasing, batch annealing has been appreciated for its small restiction for the opteration. The cold spot of the coil is very important in the BAF(Batch annealing furnace) annealing process. Because of the annealing cycle time in the BAF, annealing was decided on the cold spot of the coil. So, we tested the effect,variation of cold spot, for hydrogen contents of atmospheric gas at the annealing furnace. As a result of several investigations. We confirmed the following characteristics ; after the heating and soaking,the cold spot of coil moved to 1/3 of coil thickness in the NHx atmospheric gas, but the mid point of the coil thickness is the cold spot in the Ax or .H/sub2. atmospheric gas. Therefore, the use of hydrogen instead of nitrogen as the protective gas,combined with high convection in batch annealing furnaces, has shown that considerable increases in furnace output and material quality are attainable. Owing to the low density, high diffusion and reducing character of hydrogen, a better transfer resulting in uniform material temperatures and improved coil surfaces can be achieved.

Effect of Repetitive Cold Rolling and Annealing on the Superplasticity of Fe-10Mn-3.5Si Alloy (Fe-10Mn-3.5Si 합금의 초소성에 미치는 반복 냉연 및 소둔의 영향)

  • Jeong, Hyun-Bin;Choi, Seok-Won;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.4
    • /
    • pp.211-219
    • /
    • 2022
  • It is known that superplastic materials with ultrafine grains have high elongation mainly due to grain boundary sliding. Therefore, in the present study we examined the influence of grain refinement, caused by a repetitive cold rolling and annealing process, on both superplastic elongation and superplastic deformation mechanism. The cold rolling and annealing process was repetitively applied up to 4 times using Fe-10Mn-3.5Si alloy. High-temperature tensile tests were conducted at 763 K with an initial strain rate of 1 × 10-3 s-1 using the specimens. The superplastic elongation increased with the number of the repetitive cold rolling and annealing process; in particular, the 4 cycled specimen exhibited the highest elongation of 372%. The primary deformation mechanism of all specimens was grain boundary sliding between recrystallized α-ferrite and reverted γ-austenite grains. The main reason for the increase in elongation with the number of the repetitive cold rolling and annealing process was the increase in fractions of fine recrystallized α-ferrite and reverted γ-austenite grains, which undergo grain boundary sliding.

Cold Rolling and Heat Treatment Characteristics of TiNi Based Shape Memory Wire (TiNi계 형상기억합금 선재의 냉간압연 및 열처리 특성)

  • Kim, R.H.;Kim, H.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.6
    • /
    • pp.251-257
    • /
    • 2017
  • The effect of annealing temperature on the martensitic transformation behavior, tensile deformation chracteristics and shape recovery etc., has been studied in TiNi based shape memory ribbon fabricated by coldrolling of wire. TiNi based shape memory wire (${\phi}=500{\mu}m$) of which structure is intermetallic compound could be cold-rolled without process annealing up to the reduction rate in thickness of 50%, but a few cracks appear in cold-rolled ribbon in the reduction rate in thickness of 65%. The $B2{\rightarrow}R{\rightarrow}B19^{\prime}$ martensitic transformation or $B2{\rightarrow}B19^{\prime}$ martensitic transformation occurs in annealing conditions dissipating lattice defects introduced by coldrolling. However, in case of higher reduction rate or lower annealing temperature, martensitic transformation in cold-rolled and then annealed ribbons does not occur. The maximum shape recovery rate of cold-rolled ribbons with the reduction rate of 35 and 65% could be achieved at annealing temperatures of 250 and $350^{\circ}C$, respectively. The shape recovery rate seems to be related to the stress level of plateau region on stress-strain curve.

The Effect of Intermediate Annealing on the Evolution of Texture in I.F. Steel (LF 강의 집합조직 발달에 미치는 중간열처리의 영향)

  • 김현철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.112-115
    • /
    • 1999
  • The effect of intermediate annealing on the texture evolution in I.f steel was investigated by using X-ray texture measurement. After The sample was cold rolled to 80% reduction intermediate annealing was introduced to preform ${\gamma}$-fiber orientation grains in deformed matrix. The annealing time was varied between 30 and 3600 sec, These samples were cold rolled to 90% reduction and full annealed. By intermediate annealing final full annealed samples had very homogeneous ${\gamma}$-fiber orientation resulting in good deep drawability.

  • PDF

The effect of cold rolling reduction ratio on the texture evolution in Al-5% Mg alloy (Al-5%Mg 합금 판재의 집합조직 발달에 미치는 냉간 압하율의 영향)

  • Choi, J.K.;Kim, H.W.;Kang, S.B.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.102-105
    • /
    • 2008
  • To investigate the evolution of deformation texture during cold rolling deformation, cold rolling process on a commercial Al-5% Mg sheet was carried out at different rolling reduction ratio. The evolution of annealing texture in cold-rolled Al-5% Mg sheet was also investigated. The evolution of recrystallization texture during annealing process strongly depends on the rolling reduction ratio before heat treatment. Visco-plastic self-consistent (VPSC) polycrystal model was used to predict r-value anisotropy of the cold-rolled and annealed Al-5% Mg sheets. The change of volume fraction for the major texture components was also analyzed.

  • PDF

Effect of Annealing Treatment on Cold Formability of AZ31 Sheets (AZ31 판재에서 소둔처리가 상온성형성에 미치는 영향)

  • Hwang, B.K.;Lee, Y.S.;Moon, Y.H.;Kim, D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.395-398
    • /
    • 2009
  • The purpose of this paper is to investigate the effect of annealing treatment on cold formability of magnesium alloy sheet AZ31. The AZ31 sheets with three different thickness (1.0t, 1.6t, 2.0t) were annealed at three different temperatures ($345^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$). The mechanical properties and microstructure evolution of the annealed AZ31 were examined as well as limit dome height (LDH) and compared with those of as received one. The cold formability was enhanced but the strength was deteriorated by the annealing treatment.

  • PDF

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.40 no.5
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.

A study on coil temperature bariation in 75% hydrogen batch annealing furnace (75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF

A Study on Annealing Cycle Control Temperature of Hi - CON/2 BAF and HNx BAF (Hi-CON/H2 BAF와 HNx BAF의 소둔사이클 제어온도에 관한 연구)

  • 김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • A cold temperature control system for the BAF(batch annealing furnace) has been established in order to reduce energy consumption to imrpove productivity and stabilize the properties of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, changing annealing cycle time according to BAF temperature with time during heating and actual temperature measurements cold spot during soaking. The results of the temperature variation effect on the batch annealing are as follows. 1) Cooling rate is increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component. Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas and annealing cycle time is reduce to 2.7 times. 2) With enlarging the difference between furnace temperature and soaking temperature at the HNx BAF, heating time becomes short, but cooling time is indifferent. 3) If temperature difference of 300.deg. C in the temperature change of cold spot according to the annealing cycle control temperature, Hi-CON/H2BAF is interchanging at each other at 26hours, but HNxBAF at 50 hours. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1219 mm width coil must be 2.5 hours longer then that of 914mm width coil for the same coil weight at Hi-CON/H2BAF. But, it is necessary to make 2 hours longer at HNxBAF.

  • PDF

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy (냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성)

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.