• Title/Summary/Keyword: Cold Water Pipe

Search Result 46, Processing Time 0.028 seconds

Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House (소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

A Case Study on Cold Water Damage to Rice by Installation of Underground Drain Pipe at a Mountainous Valley (산간 계곡의 지하배수관 설치에 따른 벼 냉수피해 사례분석)

  • Shim, Kyo-Moon;Jung, Myung-Pyo;Kim, Yong-Seok;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.270-274
    • /
    • 2015
  • The complaint was filed for the cold water damage to rice in accordance with the installation of buried drain pipes in the mountainous areas of the valley. Field research was conducted in order to identify and analyze relevance of cold water damage to rice with underground drain pipe installation. In conclusion, water temperature was analyzed by 0.5 to $4.5^{\circ}C$ lower than before the installation of underground drain pipes, so the cold water damage to rice was likely to occur at the rice paddy field using cold water passing through the underground drain pipe. Therefore, the rice harvest was estimated to be impossible without appropriate measures of water temperature rise such as use of small unshaded warming basins, before water is applied to fields.

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Effect of Twisted - Tape Tubulators on Heat Transfer and Flow Friction inside a Double Pipe Heat Exchanger

  • Phitakwinai, Sutida;Nilnont, Wanich;Thawichsri, Kosart
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.124-131
    • /
    • 2015
  • Computational fluid dynamics (CFD) has been employed for the Heat exchanger efficiency of a counter flow heat exchanger. The Heat exchanger efficiency has been assessed by considering the computed Nusselt number and flow friction characteristics in the double pipes heat exchanger equipped with two types twisted-tapes: (1) single clockwise direction and (2) alternate clockwise and counterclockwise direction. Cold and hot water are used as working fluids in shell and tube side, respectively. Hot and cold water inlet mass flow rates ranging are between 0.04 and 0.25 kg/s, and 0.166 kg/s, respectively. The inlet hot and cold water temperatures are 54 and $30^{\circ}C$, respectively. The results obtained from the tube with twisted-tapes insert are compared with plain tube. Nusselt number and friction factor obtained by CFD simulations were compared with correlations available in the literature. The numerical results were found in good agreement with the results reported in literature.

A Study on the Design Method of Cold & Hot Water Manifold System for Residential Buildings through the Piping Network Analysis (관망해석을 통한 주거용 건축물의 급수.급탕 헤더시스템 설계 방안에 관한 연구)

  • Cha, Min-Chul;Seok, Ho-Tae;Kim, Dong-Woo
    • Journal of the Korean housing association
    • /
    • v.19 no.5
    • /
    • pp.111-120
    • /
    • 2008
  • The aim of this study is to present the design methods about manifold location being installed and size and to draw out the proper piping size as comparing the fluctuation of discharge with manifold size and residence size through the piping network analysis, when using the same faucet in accordance. The findings are summarized as follows, 1) an appropriate header main body pipe diameter was deemed to be $32{\sim}50\;mm$. 2) the research presented design measures for the application of appropriate water supply inlet pipe diameters according to residential buildings with various sizes. 3) the header direct branch piping method is ideal for small and medium-sized residential complexes, and the header branching and semi header methods are deemed to be more favorable for large residential complexes. 4) this study offered design measures for appropriate header system main body pipe diameters, water supply inlet pipe diameters, header system piping methods, application methods for functional auxiliary equipment units, and header system installation spaces and location.

Freeze Protection for Passive Solar Water Heating System (자연순환형 태양열온수기 동파방지기술)

  • Kim, Jong-Hyun;Hong, Hi-Ki;Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.327-333
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and shortage of excessive electric power consumption. In the experimental device, hot water in storage tank was used to heat the outlet pipe from the tank if the pipe surface temperature falls lower than a set point. The cold water pipe to the storage tank was installed to directly contact the hot water pipe surface temperature rose by transferred heat.

A Study on Risk Assessment of extreme Cold Waves in Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 극한 한파 위험성 평가에 관한 연구)

  • Han-Duk Kim;Eun-Gu Ham;Se-Young Ko
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.584-592
    • /
    • 2024
  • Purpose: The biggest concern in cold wave situations is that the fire extinguishing water initially supplied through dry pipes with empty pipes consumes enthalpy and freezes as it rapidly approaches the surface temperature of steel pipes that have been exposed to sub-zero outdoor air for a long time. It has no choice but to be. Method: Therefore, the study found that ice crystals were generated during transport, making it difficult to transport fire extinguishing water, and as a result of the review, when the heat load passed through the piping material, the heat loss per unit length from the piping to the surroundings was 0.946. Results: When calculating the volume of the main pipe, it was calculated that the fire extinguishing water supplied at a temperature of 15 degrees from the underground pipe would have a volume of 3.33m3 to reach the first branch point. If we calculate the heat required until this volume reaches below zero, we get 316.350 kcal. When the results were reviewed using the related formula, the time required for the fire extinguishing water to completely freeze up to the first branch of the steel pipe was found to be 3,412 seconds. Conclusion: Fire-fighting water, which must reach from the main pipe to the branch pipe and nozzle in good condition, must minimize heat loss through the pipe surface along the transfer path. To achieve this, it is necessary to supplement insulation of the main pipe and branch pipes. In this study, the use of inorganic perlite material or flame-retardant rubber foam insulation was proposed through analysis of insulation properties.

Heat transfer characteristics of the heat pipe using simplified heat transfer model (단순 열전달 모델을 이용한 히트파이프의 열전달 성능특성에 관한 연구)

  • Seo, Jae-Hyeong;Bang, Yu-Ma;Seo, Lee-Soo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The objective of this study was to examine numerically the heat transfer and flow characteristics of the heat pipe with a wick using the simplified heat transfer model to enhance the cooling effects of high heat flux devices and minimizing the energy consumption for electric vehicles. The heat pipe with a wick was analyzed using commercial software with COMSOL and water was used as the working fluid. The velocity and temperature characteristics of the heat pipe were simulated numerically along the heat pipe and the local and average Nusselt numbers were calculated. As a result, the driving force occurred because of the temperature difference between the hot side and the cold side. The heat transfer of the heat pipe occurred from the hot side to the cold side and increased toward the center position. In addition, the average Nusselt numbers were 1.88 for the hot side and 0.1 for the cold side, and the maximum Nusselt number was 4.47 for the hot side and 0.7 for the cold side.

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.