• Title/Summary/Keyword: Cold Rolled Steel

Search Result 249, Processing Time 0.023 seconds

Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels (0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Effect of Pass Schedule on the Microstructures and Mechanical Properties of Multi-step Cold Rolled High Carbon Steel Wires (다단계 냉간 압연된 고탄소강 와이어의 미세조직 및 기계적 특성에 미치는 패스스케줄의 영향)

  • Woo, Dong-Hyeok;Lee, Wook-Jin;Park, Ik-Min;Park, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.320-326
    • /
    • 2011
  • Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.

Effect of Surface Roughness on Frictional Behavior of Sheet Steel for Automotive (자동차용 냉연 강판의 표면 거칠기에 따른 마찰 특성 분석)

  • Han, S.S.;Park, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.401-406
    • /
    • 2008
  • The frictional behavior of stamping process is a function of interface parameters such as sheet and tool material, lubricant, surface roughness, contact pressure, sliding speed etc. Among these parameters the thing that can be controlled by a steel maker is the surface roughness of sheet. In this study, effects of surface roughness on the frictional behavior of steel sheet for automotive were investigated to find out the way to improve the frictional characteristics of steel sheet. The cold rolled steel sheets with various surface roughnesses were prepared for the test. The flat type friction test was conducted with different lubricant conditions. The surface roughness effect on frictional behavior depends on the viscosity of lubricant. The frictional characteristic of steel sheet was influenced by the amplitude of roughness as well as the shape of that.

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Fatigue Strength Evaluation of Mechanical Press Joints of Cold Rolled Steel Sheet under Cross-Tension Loading (냉간압연강 판재 기계적 접합부의 십자형 인장 하중하에서의 피로강도)

  • Kim, Jong-Bong;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, for the evaluation of the static and fatigue joining strength of the joint, the geometry of the cross-tension specimen was adopted. The specimens were produced with optimal joining force and fatigue life of the clinch joint specimens was evaluated. The material selected for use in this study was cold rolled mild steel (SPCC) with a thickness of 0.8 mm. The maximum tensile load was 708 N for the specimen with single point. The fatigue endurance limit (=42.6 N) per point approached to 6% of the maximum tensile strength at a load ratio of 0.1, suggesting that the joints are vulnerable to cross-tension loading during fatigue. Compared to equivalent stress and maximum principal stress, the SWT fatigue parameter and equivalent strain can properly predict the current experimental fatigue life. The SWT parameter can be expressed as $SWT=2497.5N^{-0.552)_f$.

Study of Stress Distribution of Cold Rolled Steel Sheets in Tension Leveling Process (냉연 형상 교정시 Stress 천이 현상 연구)

  • Choi H. T.;Hwang S. M.;Koo J. M.;Park K. C.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.497-502
    • /
    • 2004
  • The shape of cold rolled steel sheets is defined as the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three- dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process. The numerical study can be summarized as follows. (1) If we pass the edge wave material (steepness: $1.0\%$) that the stress-difference between the strip center and the edge is 5.2kgf through tension leveler. the stress-difference is decreased 0.45kgf and the steepness is improved to $0.29\%$. (2) If the Intermesh is increased from 6mm to 7mm, the steepness is improved from $0.294\%$ to $0.268\%$. (3) If the initial steepness is decreased form $1.0\%$ to $0.75\%$, the final steepness is improved from $0.294\%$ to $0.263\%$. We know that more increased intermesh and lower initial steepness make the final steepness improved.

Effect of Alloying Composition and Plastic Deformation on the Microstructure of 22Cr Micro-Duplex Stainless Steel (합금원소와 소성변형이 22Cr 마이크로 듀플렉스 스테인리스강의 미세조직에 미치는 영향)

  • Park, Jun-Young;Ahn, Yong-Sik
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.793-800
    • /
    • 2012
  • The effect of cold rolling on the microstructural evolution in 22Cr-0.2N micro-duplex stainless steel was investigated. The 22Cr-xNi-yMn-0.2N duplex stainless steel plates with various Ni and Mn contents were fabricated. The steels were vacuum induction melted and hot rolled, followed by annealing treatment at the temperature range of $1000-1100^{\circ}C$, in which both the austenite and ferrite phases were stable. The volume fraction of the ferrite phase depending on the alloy compositions of Ni and Mn increased with an increase in the annealing temperature. Grain growth in the ferrite phase occurred markedly after cold rolling followed by annealing, while fine recrystallised grains were still found in the austenite phase. A large number of martensite laths was found in the microstructure of cold rolled steels, which should be formed by strain-induced martensite from the austenite phase. The intersections of stacking faults were revealed by TEM observation. The volume fraction of the martensite phase increased with an increase of the reduction ratio by cold rolling.

Laser Line Welder for Continuous Operation of Cold-rolled Steel Coil (초극박재 냉연코일의 연속조업을 위한 Laser Line Welder)

  • Choi, Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • A laser line welder using a solid-state laser (Yb:YAG) has been manufactured for joining ultra-thin cold-rolled steel coils in steelworks. The coils to be welded primarily range from 0.15 to 0.3 mm in thickness and 800 to 1,100 mm in width. Because the steel plate is extremely thin, it is very important to control the stop positions of the clamp at cutting and welding points. In this study, both hydraulic proportional control valves and LVDT sensor embedded cylinders were used to precisely control and monitor the positions of clamps with complementary stoppers. As a result, the positions could be controlled within an error of ${\pm}30{\mu}m$. Erichsen cupping tests on the welded joints show that the Erichsen index ranges from 4.4 to 4.6 mm. Furthermore, the tensile strength of welding points is comparable to that of the base metal.

The Resistance Spot Weldability of surface roughness textured cold-rolled steel sheet (표면조도처리 강판의 점용접성에 관한 고찰)

  • Kim, Gi-Hong;Park, Sang-Sun;Park, In-Cheol;Kim, Seong-Won;Sin, Byeong-Hyeon;Choe, Yeong-Min;Park, Yeong-Do
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.342-344
    • /
    • 2007
  • The resistance spot weldability of surface textured cold-rolled steel sheet was evaluated. One steel sheet(T4.5) showed reduced electrode life with less than 2000 welds, and all other steel sheets(E2.2, E4.5, T2.2) made more than 2500 welds. The carbon imprint test revealed that there is sudden electrode diameter increase around 1700 welds. It is believed that the increased electrode diameter decreased current density, and resulted in decreasing weld electrode life due to small weld button size. It is considered that surface roughness difference may attribute to heating during weld cycle and reduced the weld electrode life.

  • PDF