• 제목/요약/키워드: Cold Hobbing

검색결과 8건 처리시간 0.021초

콜드호빙에 의한 냉간단조용 금형제작에 관한 연구 (A Study on the Manufacturing Cold Forging Dies by Cold Hobbing)

  • 유헌일;김세환;서희강
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.594-603
    • /
    • 1996
  • It has been known that the life time of cold forging dies is shorten by the cracks and wear produced during the operation. Thus it is required to mak the same new one too often, At this time of making new ont the cutting work and electical discharge machining were mormally used. But the precision of product is declined in every times of making the mew dies due to the diffefence in dimensional accuracy arised from the electical discharge machining. Especially it can't meet the delivery date because the production was delayed for making another die. Furthemore it has the problem of increasing the production cost. Therfore inthis study we tried to solve these problems using the hobbing method instead of electical discharge machining.

스테인리스 강판(SUS420)의 냉간단조용 금형개발에 관한 연구 (A Study on the Development of Cold Forging Dies for Stainless Steel Sheet (SUS420))

  • 김엽래;김세환;유헌일
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.877-885
    • /
    • 1995
  • Cold forging die for metal scissor is made by electric discharge machine. The impression of female die is made by electric discharge machine, the heat treatment is applied, and the impression is polished. When we forge goods by using this kind of die, the abrasion is severe and the crack occurs after forging about 240 strokes. Because the die should be frequently produced in the case, the cost rises, the work is delayed, and the precesion of goods is not good. Therefore, the electric discharge machine was not used in this study. Main die was produced by making hob, installing the hob to cold hobbing press, indenting the die material, and cold hobbing the impression. The die life was increased to 5,000-6,000 strokes in this case. In the future study, the die life will be increased to 10,000 strokes by changing the following : (1) the pre-treatment of slug, (2) the structure of die block, (3) the heat treatment of die material

냉간단조금형에서 다이블록의 수명연장에 관한 연구 (A Research on the Life Span extension of Die Block in Cold Forging Die)

  • 김세환;최계광
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.281-285
    • /
    • 2008
  • 냉간단조금형(Cold Forging Die)의 다이블록(Dieblock)을 제작하는 방법 중의 하나로, 다이블록 제작용 재료를 면가공 하여 다이블록 상면(上面)을 마스터펀치(Master Punch)인 호브(Hob)로 압입(Indentation) 시켜 절삭가공((Cutting Work)이 아닌 다이호빙(Die Hobbing) 방법으로 임프레션(Impression)을 성형하여 제작하고 있다. 이 방법에 의하여 다이블록의 재료를 합금공구강(Alloy Tool Steel)인 SKD11을 사용하여 제작하고, 스테인리스판(Stainless Sheet Metal)을 제품 재료로 하여 냉간단조가공(Cold Forging Work)을 수행하였더니 6,000 스트로크(Stroke)에서 금형수명(Die Life)을 다 하고 파손되었다. 본 논문에서는 다이블록 재료를 고속도공구강(High Speed Tool Steel)인 SKH51로 교체 제작하고, 탄소강(Carbon Steel)인 S45C를 제품 재료로 하여 냉간단조가공을 수행하였더니 21,000 스트로크에서 금형수명을 다하고 파손되어 종래의 방법과 비교 검토하였을 때 350%의 금형수명 연장 효과를 얻게 되었다.

배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구 (A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming)

  • 김홍석;정현철;이영선;강성훈;이일환;최석탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF

수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계 (Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type)

  • 박상수;이정민;김병민
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

냉간단조금형에서 다이블록의 수명연장에 관한 연구 (A Research on the Life Span extension of Die Block in Cold Forging Die)

  • 김세환;최계광
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.337-340
    • /
    • 2007
  • 냉간단조금형(Cold Forging Die)의 다이블록(Dieblock)을 제작하는 방법 중의 하나로, 다이블록 제작용 재료를 면가공 하여 다이블록 상면(上面)을 마스터펀치(Master Punch)인 호브(Hob)로 압입(Indentaion) 시켜 절삭가공((Cutting Work)이 아닌 다이호빙(Die Hobbing) 방법으로 임프레션(Impression)을 성형하여 제작하고 있다. 이 방법에 의하여 다이블록의 재료를 합금공구강(Alloy Tool Steel)인 SKD11을 사용하여 제작하고, 스테인리스판(Stainless Sheet Metal)을 제품 재료로 하여 냉간단조가공(Cold Forging Work)을 하였더니 6,000 스트로크(Stroke)에서 금형수명(Die Life)을 다 하였다. 본 논문에서는 다이블록 재료를 고속도공구강(High Speed Tool Steel)인 SKH51로 교체 제작하고, 탄소강(Carbon Steel)인 S45C를 제품 재료로 하여 냉간단조가공을 수행 하였더니 21,000 스트로크에서 금형수명을 다하고 종료 되어 종래의 방법과 비교 검토 하였을 때 350%의 금형수명 연장 효과를 얻게 되었다.

  • PDF

자동차 변속기용 헬리컬 기어의 냉간전방압출 공정 개발에 관한 연구 (A Study on Development of Cold Forward Extrusion Process for Helical Gears of Automotive Transmissions)

  • 김홍석;이일환;최석탁;이영선
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.485-490
    • /
    • 2011
  • The application of helical gears in crucial parts of automotive transmissions has been steadily increasing due to their higher power transfer performance compared to spur gears. However, the traditional gear manufacturing methods such as hobbing and deburring require large cycle times with expensive production lines so that there have been intensive efforts trying to manufacture gears via forging processes. Although forging processes for spur and bevel type gears have been developed on the practical level, the manufacturing of helical gears is still dependent on the traditional cutting process. Therefore, this paper seeks to develop a cold forward extrusion process for the helical gear with the pitch diameter of 43.5mm and a helix angle of $18.4^{\circ}$. A forward extrusion process was used due to the relatively small diameter of the target geometry. The material deforming behavior influenced by the die geometry was examined by using CAE analysis. Finally, it was found that the helical gear manufactured by the developed extrusion process satisfied the dimensional accuracy and mechanical characteristics for automotive transmissions.

평기어의 정밀 냉간단조 금형설계 (Die design on the Precision Cold Forging of Spur Gear)

  • 권혁홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.242-247
    • /
    • 1998
  • The conventional closed-die forging processes had been applied to forging of the spur gears. But this type process requires high pressure. The commercial finite element analysis code ANSYS for the stress and elastic deformation of non-axisymmetric die was adopted in this study. In the non-axisymmetric die such as gear forging, maximum stresses were imposed on the tip of the gear tooth. When the stress exceeds yield strength of insert die, many approaches were attemped to prevent the die failure. Good shaped products are forged successfully. This type process could by used as an advanced technique to replace conventional hobbing process of gear.

  • PDF