• Title/Summary/Keyword: Cold Forming Process

Search Result 238, Processing Time 0.026 seconds

Manufacturing Process Design of Aluminum Alloy Bolt (알루미늄 합금 볼트의 제조 공정 설계)

  • Kim, Ji-Hwan;Chae, Soo-Won;Han, Seung-Sang;Son, Yo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • The use of aluminum alloy parts in the automotive industry has been increasing recently due to its low weight compared with steel to improve fuel efficiency. Companies in the auto parts' manufacturing sector are expected to meet the government's strict environmental regulations. In this study, manufacturing process of aluminum alloy bolt has been designed from forming to heat treatment. Bolt forming process is composed of cold forging for body and rolling for thread. In this study only cold forging process is considered by employing the finite element method. In the cold forging process, preform shape was designed and damage value was considered for die design. Two steps of forging process has been developed by the simulation and a prototype was manugactured accordingly. As a final process, solution heat treatment and aging process was employed. A final prototype was found to meet the required specifications of tensile strength and dimension.

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

Automatic Process Design System for Cold Forging of Fasteners with Various Head Geometries (다양한 머리 형상을 갖는 체결구의 냉간 단조 자동 공정 설계 시스템)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.141-148
    • /
    • 1994
  • In order to improve the productivity of cold forging at low production cost, an integrated system's approach is necessary in handling the material preparation and the optimum process design, considering the forming machines, tooling, and operation including quality control. As the first step toward this approach, an expert system for multi-stage cold forging process design for fasteners with various head geometries is developed using Prolog language on IBM 486 PC. For effective representation of the complex part geometries, the system uses the multiple element input, and the forward inference scheme in determination of the initial billet size and intermediate forging steps. In order to determine intermediate steps, the basic empirical rules for extrusion, heading, and trimming were applied. The required forming loads and global strain distributions at each forging step were calculated and displayed on the PC monitor. The designed process sequence drawing can be obtained by AutoCAD. The developed system will be useful in reducing trial and error of design engineers in determining the diameter and height of the initial cylindrical billet from the final product geometry and the intermediate necessary sequences.

  • PDF

Back-pressure cold forging analysis to minimize non-forming area of gear teeth (기어 치형의 미성형 구간 최소화를 위한 배압 냉간 단조 성형 해석)

  • Lee, Yongwoo;Kim, Janghoon;Kwon, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.256-262
    • /
    • 2016
  • This study performed the back-pressure cold forging analysis to minimize the non-forming area of gear teeth for the output hub and reaction hub in automatic transmission. Two important factors of the back-pressure cold forging process, the load of the punch and the backup force applied to the sleeve, were determined through displacement control analysis. The non-forming area of the gear teeth was compared with both cases of the displacement control analysis and load control analysis, and their solution is similar to the measuring result of a real workpiece. The results show that the load of the punch is dependent on the reduction area of the workpiece, and the backup force applied to the sleeve is determined with regard to the cross-section-area of sleeve. This analysis procedure can be useful and effective in determining the manufacturing condition of the back-pressure cold forging process to minimize the non-forming area.

THE DEVELOPMENT OF SUS 316L BONE PLATE FORGING PROCESS BY COMPUTER SIMULATION TECHNOLOGY

  • Hwang Robert S.;Jou Jin-Long;Wang Kai-Hung;Chen Yi-An
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.36-39
    • /
    • 2003
  • Due to the strength and biocompatibility requirement, the stainless steel SUS 316L is widely used for trauma internal fixation device. SUS 316L can be hardened and strengthened only by cold work. In this work, the material compression test is performed both in laboratory and computer simulation by a FEM analysis software DEFORM to correlate the hardness to strain. This data is then used for preform design and predict the hardness of the finish bone plate forging. Finally, we compared the hardness between the actual forging and computer analysis results. Although the predicted hardness from computer simulation. is 55HV higher than the final forging sample, we can get good compatibility on the hardening tendency of cold forging.

  • PDF

A Study on the Process Planning and Tool Design of Cold Forging Using Personal Computer (II) (PC에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구 II)

  • 최재찬;김병민;김형섭;허만조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.190-198
    • /
    • 1989
  • Some Developments in computer aided procedures for cold forging process and tool design of rotationally symmetric cup shape parts are described. The developed system enables appropriate forging sequence to be determined automatically, together with details of corresponding preform, die and punch design. The computer program developed is interactive and written in BASIC. This system not only assist the heavy work of designers but greatly shorten the time of design.

Process Sequence Design in Cold Forged Part of Hub (허브 냉간단조품의 공정설계)

  • Go, Dae-Cheol;Kim, Byeong-Min;O, Se-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3387-3397
    • /
    • 1996
  • The Hub is an auto mobile component used as aircon clutch. The important aspects in cold forging of the Hub with complex geometry are the design of an initial shape of the workpiece, the possibility of the forming by one-stage operation and the determination of number of performs, etc. Based on the systematic procedure of process sequence design, in this paper, the forming operation of cold forged part of the Hub is designed by the rigid-plastic finite element method. The two design criterion of geometrical filling without defect and an even distribution of effective strain in final product are investigated in controlling the initial shape of the workpiece and preform configuration. It is noted that one preforming operation is required in order to obtain final product of the Hub.

The Technology of Complex Forming for Automobile Part with Flow Control (유동제어를 통한 자동차 부품의 복합 성형기술)

  • 이동주;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06b
    • /
    • pp.185-194
    • /
    • 1999
  • This paper suggests the new techmology to control metal flow in order to reduce the number of preforming and machining for the cold forged product with complex geometry. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be preformed double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub which is part of air conditioner clutch. According to the result of this study, the relative velocity of mandrel and punch is primary process variable.

  • PDF