• Title/Summary/Keyword: Cold Forming Process

Search Result 238, Processing Time 0.019 seconds

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.

A Study on the characteristics of high speed precision bar cropping (환봉의 고속정밀절단 특성에 관한 연구)

  • 임성주;김소겸;나경환;정성종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.209-217
    • /
    • 1994
  • The present study is concerned with the characteristics of the high speed precision bar cropping. This process is a practical application of High Energy Rate Forming in which the impact energy source is given by internal combustion engine. To enhance the added value of product, the recent forging fields trend toward the near net shape processes through the cold and closed die forging. For the purpose of these processes the precedent process is to obtain the precision billet which has little weight deviation and defect. The accuracy of initial billet by bar cropping depends upon the process parameters and die design technology. Therefore, in order to investigate the effect of process parameters upon product quality, the cropping experiments are carried out according to the various parameters such as billet clearence, billet length, billet material, cropping speed and so on. From these results some criteria of the optimal die design for the product of good quality are suggested.

  • PDF

The Thickness of Recrystallization Layer during Aluminum Extrusion Process (알루미늄 압출공정변수에 따른 재결정층 두께 변화)

  • Oh K. H.;Min Y. S.;Park S. W.;Jang G. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.266-269
    • /
    • 2005
  • The effect of exit temperature on the thickness of recrystallization layer during Al extrusion process was investigated. The recrystallization layer of an extruded Al alloy is an important feature of the product in a wide range of applications, particularly those within the automotive industry. The thicker recrystallized layer in the Al alloys can give rise to a number of problems including reduced fatigue resistance and orange peel during cold forming. But the interaction of extrusion process variables with the thickness of recrystallization layer is poorly understood, and there is limited information available regarding the role of the main hot extrusion variables. Using the 3650 US ton extrusion press, this paper describes the effect of the main process variables such as billet temperature, ram speed, and exit temperature on the thickness of recrystallization layer for the A6XXX Al alloy.

  • PDF

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Development of Forming Technology for Clutch Gear Using Artificial Neural Network (신경망을 이용한 클러치 기어의 정밀성형공법 개발)

  • Kang, Jae-Young;Kim, Byung-Min;Kim, Yeong-Hwan;Kim, Dong-Hawn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • Precision forging of gears has a lot of advantages when compared to conventional gear shaping, because it allows the manufacture of gear parts without flash and consequently without the need for subsequent machining operations. In this study, the cold forging process is determined to manufacture the cold forged product for the precision clutch gear used of a commercial automobile, To do this, shape ratio of initial shape having influence the forgeability of forged product is analyzed. The optimal initial shape of clutch gear is designed using the results of DEFORM-3D and the artificial neural network (ANN). The initial shape through the detail analysis results, such as metal flow, distributions of strain can be obtained.

Finite Element Approach to Prediction of Dimensions of Cold Forgings (유한요소법을 이용한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J. M.;Lee M. C.;Park R. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load Is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

  • PDF

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

Forging Simulation of a Micro-Former Forging Process of an ABS Part (ABS 용 부품의 마이크로 포머단조공정 시뮬레이션)

  • Choi, I.S.;Yoo, S.W.;Park, S.G.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.165-169
    • /
    • 2007
  • In this study, the factors that have strong relationship with size effects on forging simulation are investigated and then a dimensionless concept is implemented into the forging simulator. The approach is applied to simulating a micro former forging process of which sequence involves a piercing process to make a hole of 0.7mm diameter of the product whose maximum diameter is 3mm. The simulated results are discussed to reveal the size effect in forging simulation.

  • PDF

FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill (유성압연기를 사용한 동관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Han, Ki-Beom;Kim, Kwan-Woo;Choe, Jong-Woong;Kim, Jae-Hun;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.303-309
    • /
    • 2010
  • Copper tube rolling process using the planetary rolling mill has been studied by using finite element method. This rolling is process that makes copper tube by three-roll with mannesmann method. Also, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in copper tube rolling. Rolling process for copper tube was successfully simulated and it should be useful to determine optimal rolling condition.

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.