• Title/Summary/Keyword: Cold Forged Part

Search Result 37, Processing Time 0.021 seconds

Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part- (스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교-)

  • Kwon, Y.C.;Lee, J.H.;Lee, C.M.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.

Dimensional change of micro forged part on precision cold forging (미세성형품의 정밀 냉간단조시 치수변화 분석)

  • Lee, M.W.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.254-258
    • /
    • 2008
  • Dimensional accuracy is very important quality in micro forged part, especially on forged part. Dimension of forged part is changed continuously during forging process. Loading, unloading and ejecting stage affects dimensional of the forged tool. The elasto-plastic material model for billet and elastic model for die were used to analyze these changes. At same time, the calculated results were compared and analyzed by the experiment on same conditions. From the experimental and analytical studies, we can calculated the amount of difference between die and forged part, that is 0.49% based on the die dimension. The dimensional change is smaller than that of general sized-forged part,0.6%.

  • PDF

FE TECHNIQUES TO IMPROVE PREDICTION ACCURACY OF DIMENSION FOR COLD FORGED PART

  • Lee Y.S.;Lee J.H.;Kwon Y.N.;Ishikawa T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.26-30
    • /
    • 2003
  • Since the dimension of cold forged part is larger than the cavity size of forging die, the difference results from the various features, such as, the elastic characteristics of die and workpiece, thermal influences, and machine-elasticity. All of these factors should be considered to get more accurate prediction of the dimension of forged part. In this paper, severe FE techniques are proposed to improve the prediction accuracy of dimension for cold forged part. To validate the importance of the above mentioned factors, and the estimated results are compared with the experimental results. The used model is a closed die upsetting of cylindrical billet. The calculated dimensions are well coincided with .the measured values based on the proposed techniques. The proposed techniques have put two simple but important points into Fe simulation. One is the separation of forging stages into 3 steps, from a loading through punch retraction to ejecting stage. The other is the dimensional change, according to the temperature changes due to the deformation. The FE analysis could predict the dimension of cold forged part within the $10{\mu}m$, based on the more realistic consideration.

  • PDF

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

FE techniques for the accurate prediction of part dimension in cold forging (냉간 단조품의 치수 정밀 예측을 위한 유한요소해석 기술)

  • 이영선;권용남;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.29-33
    • /
    • 2003
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension only by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered as reality, FE results could predict the part dimension within the range of 10 $\mu\textrm{m}$. And if temperature also is considered really, the predicted dimensions are well coincided with the experimental down to about 5$\mu\textrm{m}$.

  • PDF

FE Techniques for the Accurate Prediction of Part Dimension in Cold Forging (냉간 단조품의 치수 정밀 예측을 위한 유한 요소 해석 기술)

  • 이영선;권용남;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.3-8
    • /
    • 2004
  • The improvement of dimensional accuracy for forged part is one of major goals in cold forging industry. There are many problems in controlling the dimension by the trial-and-error, especially for a precision forged gear. A FEM analysis has been used in developing the forging technology. However, FE techniques have to be reconfirmed for predicting accurately the dimension of forged part. In this study, the effects of elastic characteristics and temperature changes are investigated by the comparisons between experimental and FEA in cold forging. When FE models related with elastic characteristics are considered practically, FE results could predict the part dimension within the range of $10\mu\textrm{m}$. And if thermal effects also are considered additionally, the predicted dimensions are well coincided with the experimental down to about $5\mu\textrm{m}$.

Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product (냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석)

  • Suh D.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

Process Sequence Design in Cold Forged Part of Hub (허브 냉간단조품의 공정설계)

  • Go, Dae-Cheol;Kim, Byeong-Min;O, Se-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3387-3397
    • /
    • 1996
  • The Hub is an auto mobile component used as aircon clutch. The important aspects in cold forging of the Hub with complex geometry are the design of an initial shape of the workpiece, the possibility of the forming by one-stage operation and the determination of number of performs, etc. Based on the systematic procedure of process sequence design, in this paper, the forming operation of cold forged part of the Hub is designed by the rigid-plastic finite element method. The two design criterion of geometrical filling without defect and an even distribution of effective strain in final product are investigated in controlling the initial shape of the workpiece and preform configuration. It is noted that one preforming operation is required in order to obtain final product of the Hub.

A study on the changes of involute-curve of spur gear die for cold forging and forged part (냉간 단조 스퍼어 기어의 금형과 단조품의 인볼류트 곡선 변화 연구)

  • 천세환;이정환;이영선;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.44-48
    • /
    • 2003
  • In metal working, cold forging that has profit to satisfy dimension accuracy is using in various manufacturing products. Recently, most of the interest thing is precision forging of gear, Gear forging product is more strength than broaching gear, and it has many advantages with reduction of factory expenses. The reason of difficulty to improve accuracy of gear dimension compare to another products is the dimension accuracy is very high, approximately 10$\mu\textrm{m}$, and because die of involute teeth and elastic strain of forged tool differ from standard curve. This paper represent quantitative analysis of die and teeth of forged tool, namely difference of curves, with experiments and analyze the factor of dimension gap, finally, will design compensated involute curve.

  • PDF

A COLD FORGING OF HELICAL GEAR FOR STEERING PINION

  • Kim M.E.;Kim Y.G.;Choi S.;Na K.H.;Lee Y.S.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • The precision cold forging of helical gear for steering pinion has been studied. Because of the large helix angle, there are many difficult problems to control the material flow and part dimension. The die shape was proposed to improve the flow of workpiece. In order to improve the dimensional accuracy of forged part, a FE analysis was performed. The proposed die shape drives to flow amicably workpiece. The applied load was reduced up to 10 percent, compared to the conventional-shaped-die. The elastic deformation of die has been investigated quantitatively by the 3-dimensional FE analysis. The die-land has been expanded up to $10{\mu}m$ on loading stage, based on the FEM results. Therefore, the elastic deformation amounts should be taken into consideration to improve the dimensional accuracy of forged helical gear.

  • PDF