• Title/Summary/Keyword: Colburn coefficient

Search Result 20, Processing Time 0.02 seconds

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation (새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구)

  • Jang, Yeong-Jun;Lee, Yeon-Gun;Kim, Sin;Lim, Sang-Gyu
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.

Characteristics of Fin-Side Heat-Transfer and Pressure Drop in a Condenser for Automobile (자동차용 응축기의 휜 열전달 및 압력강하 특성)

  • 곽경민;이홍열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.152-158
    • /
    • 2004
  • An experimental study was performed to determine the fin-side heat transfer and pressure drop of a condenser for automobile. Five sample with different fin height and louver angle were tested, 9mm, 8mm, 7.5mm, 5.4mm and 4.5mm. Results are presented as plot of Colburn j-factor(or heat transfer coefficients) and friction factor(or pressure drop) against the Reynolds number(or inlet air velocity) based on louver pitch, in the range of 110 to 480. The results show that both heat transfer and pressure drop on the fin are mainly affected by the louver angle in a lower range of air velocity, but, by the fin height in a higher range of air velocity. The performance of 5.4mm fin is the highest, compared to other fin sample.

Effects of Fin Configuration on the Evaporator Performance (휜 형상에 따른 증발기의 전열 성능)

  • Lee, Jin Ho;Kwon, O Kap
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 1990
  • An experimental investigation was made to study the performance characteristics of evaporator having different fin configurations and tube inner grooves. Three different types of fin such as super slitted fin, slitted fin, plain fin, and two types of tube such as inner grooved tube, and bare tube, are tested varying the air velocity, evaporation temperature and superheat of refrigerant. Results show that in the range of air side Reynolds number $3{\times}10^3\;-\;1.5{\times}10^4$ evaporator with super slitted fin and inner grooved tube shows best performance. It is 80% higher in overall heat transfer coefficient and 2.6 times higher in pressure loss compared to that with plain fin inner grooved tube. Friction factor is found to be almost independent of evaporating temperature and degree of superheat, while Colburn j factor varies with evaporating temperature.

  • PDF

Heat Transfer and Friction Characteristics of Slit Fin and Tube Heat Exchangers in Wet Conditions (습표면 조건에서 슬릿 핀-튜브 열교환기의 열전달 및 압력강하 특성)

  • Chang, Keun-Sun;Phan, Thanh-Long
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Water condensate accumulated on the surface of a fin-and-tube heat exchanger significantly affects its thermal and hydraulic performance. The purpose of this study is to investigate the effect of condensate retention on the air-side heat transfer performance and flow friction. Total 12 samples of slit and plate fin-and-tube heat exchangers with varying fin spacing and number of tube rows are tested under dry and wet conditions. The thermal fluid measurements are made using a psychometric calorimeter. Frontal air velocity varies in the range from 0.7 m/s to 1.5 m/s. Using the experimental data, presented are the heat transfer coefficients in terms of Colburn j-factor and friction factor.

Performance Comparison of 7mm Fin-Tube Heat Exchangers for Various Design Conditions (설계 조건에 따른 7mm 직경 핀-관 열교환기의 성능비교)

  • Chang, Keun-Sun;Kim, Hyuk;Hong, Seok-Ryul;Kim, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.633-638
    • /
    • 2006
  • This study presents the air side heat transfer and friction characteristics of fin-tube heat exchangers with various fin types. A total of 8 samples of heat exchangers are tested. Fin patterns tested are slit, louver and plate fins. Each fin type has three cases of number of tube rows(N=1, 2, 3) and two different fin pitches. The results are plotted in terms of Colburn j-factor and friction factor f with respect to Reynolds number in the range of 200 to 510.

  • PDF

Heat Transfer Characteristics of Individual Row of Fin and Tube Heat Exchangers

  • Chang Keun-Sun;Kweon Young-Chul;Kim Young-Jae;Jeong Ji-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • Heat transfer performances of individual row of two-row fin and tube heat exchangers are experimentally investigated. Tested are four heat exchangers which are geometrically identical with the exception of fin shape, slit or louver, and that the fins between the first row and the second row are connected or separated. The tube diameter and fin spacing of the heat exchangers examined are 7mm and 1.4mm, respectively. All thermal fluid measurements are made using a psychrometric calorimeter. In order to evaluate air-side heat transfer coefficients of individual rows, tube-side water flow rates of individual rows are independently controlled such that the water-side temperature drops in each row remain at $5^{\circ}C$. Frontal air velocity varies in the range from 0.7m/s to 2.5m/s. Heat transfer coefficients are presented in terms of Colburn ${\jmath}-factor$. The results show that the heat transfer coefficient of the upstream row is larger than that for the downstream row at low Reynolds numbers.

Experimental Study of Air Side Pressure Drop and Heat Transfer Characteristics of Enhanced Fin-Tube Heat Exchangers (열전달 촉진 핀-관 열교환기의 공기측 압력강화 및 열전달 특성에 관한 실험)

  • Youn, Baek;Kil, Yong Hyun;Park, Hyun Yeon;Kim, Young Saeng
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1555-1563
    • /
    • 1998
  • Heat transfer and pressure drop for ${\phi}10.07$ dry surface fin-tube heat exchanger with wave and wave-slit fins were measured for different fin spacings and number of tube rows. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of wave fin is 1.5mm. The experiments were performed for 4 different fin spacings, 1.3, 1.5, 1.7 and 2.0mm, and the number of tube rows were 1,2 and 3 rows. The present results were compared with the previous results for the wave depth of 2mm. Also hydrophilic coated and bare fins were tested. Correlations for Colburn j-factor and friction factor were developed.

Experimental study of air side pressure drop and heat transfer characteristics of wave and wave-slit fin-tube heat exchangers (웨이브 및 웨이브-슬릿 열전달촉진 휜-관 열교환기의 공기측 압력강하 및 열전달 특성에 관한 실험)

  • Yoon, Baek;Gil, Yong-Hyun;Park, Hyun-Yeon;Yoo, Guk-Chul;Kim, Young-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.589-599
    • /
    • 1998
  • Air side heat transfer and pressure drop for fin-tube heat exchanger with wave and wave-slit fins were measured for various fin spacings and number of tube rows. Outer diameter of the tube including fin collar is 10.07mm, and experiments were done with dry surface condition. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of the wave fin is 2mm. Experiments were conducted for 1, 2 and 3 rows and 3 different fin spacings, 1.3, 1.5 and 1.7mm. An attempt was made to demonstrate advantage of the enhanced fins over the plane fin by introducing the concept of fan power, Effect of the number of tube rows on heat transfer was discussed in connection with general mechanisms of heat transfer enhancement for fin-tube heat exchanger. Also the effect of hydrophilic coating was investigated. Lastly, correlations for Colburn j-factor and friction factor were developed.

  • PDF

Experimental Study of Heat Transfer Performance of Louver-Fin Heat Exchanger (Louver-Fin 열교환기의 열전달 특성 실험 연구)

  • Chang, K.S.;Kweon, Y.C.;Hong, S.R.;Kim, J.D.;Lee, H.S.;Park, B.K.
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.209-215
    • /
    • 2007
  • This study presents the air side heat transfer and friction characteristics of fin-tube heat exchangers. Variations of heat transfer performance in each row are investigated in the present work. Experiments were performed for the Louver fin-tube heat exchangers using air-enthalpy type calorimeter, which is based on air-enthalpy method described in ASHRAE standards. The air velocity was varied from 0.7 to 2.5 m/s with 0.3 m/s interval. The results are plotted in terms of Colburn j-factor and friction factor of with respect to Reynolds number in the range of 200 to 1100.

  • PDF

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.