The Journal of Asian Finance, Economics and Business
/
v.7
no.8
/
pp.533-542
/
2020
This study estimates the nature of the relationship of entrepreneurship and business confidence on youth unemployment in the Philippines over the 2001-2017 period. The paper employed a range of cointegrating regression models, namely, autoregressive distributed lag (ARDL) bounds testing approach, Johansen-Juselius (JJ) and Engle-Granger (EG) cointegration models, dynamic OLS, fully modified OLS, and canonical cointegrating regression (CCR) estimation techniques. The Granger causality based on error correction model (ECM) was also performed to determine the causal link of entrepreneurship and business confidence on youth unemployment. The ARDL bounds testing approach, Johansen-Juselius (JJ) and Engle-Granger (EG) cointegration models confirmed the existence of long-run equilibrium relationship of entrepreneurship and business confidence on youth unemployment. The long-run coefficients from JJ and dynamic OLS show significant long-run and positive relationship of entrepreneurship and business confidence on youth unemployment. While results of the long-run coefficients from fully modified OLS and canonical cointegrating regression (CCR) found that only entrepreneurship has significant and positive relationship with youth unemployment in the long-run. The Granger causality based on error correction model (ECM) estimates show evidence of long-run causal relationship of entrepreneurship and business confidence on youth unemployment. In the short-run, increases in entrepreneurship and business confidence causes youth unemployment to decrease.
The Journal of Asian Finance, Economics and Business
/
v.5
no.2
/
pp.15-24
/
2018
The study examines the magnitude of economic spillover and the impact of foreign direct investment (FDI) inflows on the efficiency of the bank industry in China. This study employs unit root tests, cointegration tests and cointegrating regression analysis, including fully modified ordinary least squares (FMOLS), canonical cointegrating regression (CCR) and dynamic OLS (DOLS) to test the proposed hypotheses. The sample is restricted to the period of time in which monthly data is available and comparable among variables for the period from January 2002 to October 2013 (142 observations). All of the time series data was collected and retrieved from the People's Bank of China, China Monthly Statistics from the National Bureau of Statistics of China, and International Financial Statistics database from International Monetary Fund. The results of the Johansen cointegration test suggest that there is a long-run equilibrium relationship between FDI inflows, foreign exchange rate and banks performance in China. The results of cointegrating regression analysis using FMOLS, CCR and DOLS suggest that M2 supply and FDI inflows are significant at the 0.01 level. The results confirm that FDI inflows in the banking sector are positively related to the increase of banks productivity and performance and short-term loans in China. However, the results suggest that Chinese Yuan currency exchange rate to U.S. dollar is not significant in the banking and financial industry of China.
Communications for Statistical Applications and Methods
/
v.15
no.5
/
pp.719-726
/
2008
In this paper we consider a joint test for seasonal cointegrating(CI) ranks that enables us to simultaneously model cointegrated structures across seasonal unit roots in seasonal cointegration. A CI rank test for a single seasonal unit root is constructed and extended to a joint test for multiple seasonal unit roots. Their asymptotic distributions and selected critical values for the joint test are obtained. Through a small Monte Carlo simulation study, we evaluate performances of the tests.
Cointegration test is usually performed under the assumption that the cointegrating vector is constant for the whole sample period. Most previous studies have used conventional cointegration methods in testing for a stable long-run equilibrium relation among related variables. However they have overlooked that the long-run equilibrium may not the unique and the stable relation may not be guaranteed. This study develops the additional statistical tests for the stability of the estimated cointegrating vector. Three tests for the parameter stability of a cointegrated regression model are utilized and applied to identify the types of variations in the long-run relation between the domestic unemployment and the rotated macroeconomic variables of interest. The present paper finds that, there exists a stable but, time-varying long-run relation between those. The observed variation in cointegrating relations is generally characterized by a discrete one-time shift, rather than a gradually evolving random walk process which is attributable to the IMF financial and economic crisis.
The purpose of this study is to investigate a simple present value model Involving earnings (i.e., the earnings discount model) that presumes a relationship between stock prices and earnings. The model suggests a simple linear equilibrium relationship between stock prices and earnings. The tests for cointegration render strong support for the cointegration hypothesis between stock prices (Pt) and earnings (Xt) even at the one-percent significance level. The tests are based on residuals from a cointegrating regression of Pt on Pt+l + Xt. This suggests that there is a stable long-nu equilibrium relationship between stock prices and earnings. The results of the tests lead to the acceptance of the present value model of stock prices involving earnings.
Purpose - The artificial intelligence industry plays an increasingly significant role in stimulating the development of United States of America's economy. On account of this background, this paper attempts to explore the impact of artificial intelligence industry on United States of America's macroeconomy. Research design, data, and methodology - This paper mainly focuses on the impact of artificial intelligence industry on GDP, employment, real income, import, export and foreign direct investment. Furthermore, the Phillips-Perron test and Canonical cointegrating regression will be employed to examine the impact of artificial intelligence industry on United States of America's macroeconomy with a sample form 2010-Q1 to 2017-Q4. Results - Via the empirical analysis, the results reveal that the artificial intelligence industry has a positive effect on United States of America's GDP, employment, real income, export and foreign direct investment. Conversely, the artificial intelligence industry has a negative effect on United States of America's import. Conclusions - In summary, the impact of artificial intelligence industry on United States of America's macroeconomy is positive and significant in statistics. Therefore, the government of United States of America should put more input into artificial intelligence industry.
The Journal of Asian Finance, Economics and Business
/
v.5
no.3
/
pp.31-41
/
2018
The study examines economic and environmental impacts of mass tourism on regional tourism destinations, particularly the establishment of "Ten New Bali", in Indonesia. The sample is restricted to the period of time in which annual data is available and comparable among variables from 1980 to 2015 (36 observations). All of the time series data was collected and retrieved from the World Development Indicator database published by the World Bank. This study applies cointegrating regression analysis using the fully modified OLS, canonical cointegrating regression, and dynamic OLS. The results of the study suggest that 1) there is a long-run equilibrium relationship between tourism receipts, environmental degradation and economic growth in Indonesia, 2) tourism growth and agriculture land growth are positively related to an increase of total output in the short-run in Indonesia, and 3) arable land is significant at the 0.01 level, but forest rents and CO2 from transport are not significant in the short-run in Indonesia. The results confirm that arable land is negatively related to an increase of total output in Indonesia. That is, when tourism growth in the economy is getting realized it shows that the environmental degradation increases greatly in inverse in the model, eventually negative impacts to the environment.
As the volatility increasement of the number of tourist, there was been controversy over supply-demand imbalance in hotel market. The purpose of this study is to analysis on determinants of hotel occupancy rate in Jeju Island. The quantitative method is based on cointegrating regression, using an empirical dataset with hotel from 2000 to 2017. The primary results of research is briefly summarized as follows; First, there are high relationship between total hotel occupancy rate and hotel occupancy of foreign tourist. The volatility of hotel occupancy is caused by foreigner user than local tourists though local tourist high propotion of hotel occupancy in Jeju Island. Second, hotel occupancy of local tourist has not relationship with demand and supply variables. Because some hotel users are not local tourists but local resident, and effects to other variables of hotel consumer trend, accommodation such as Guest house, Airbnb. Third, there are high relationship between foreign hotel occupancy rate and demand-supply variables. These research imply that total management of supply-demand is very important to seek stability of hotel occupancy rate in Jeju Island. Also it can provide a useful solution regarding mismatch problem between supply-demand as well as development the systematic forecasting model for hotel market participants.
The Journal of Asian Finance, Economics and Business
/
v.6
no.2
/
pp.63-73
/
2019
The paper aims to investigate relationships between technology and innovation management, total factor productivity and economic growth in China. By comparing the trends in total factor productivity growth of industrialized economies (i.e. OECD), this study intends to showcase the importance of total factor productivity progress in the Chinese economy. The study employs time series data of an annual basis for the period from 1977 to 2016 retrieved from the World Development Indicator. The study employs unit root test, cointegration test, fully modified least squares estimation method, canonical cointegrating regression and dynamic least squares estimation method to test the hypotheses. The results of the cointegrating regression analysis show that manufacturing growth leads to an increase of total factor productivity in the short-run in China. The findings of the study suggest that manufacturing (i.e. technology and product innovation) is positively related to the increase of total factor productivity in the short-run and total output growth in the long-run. The findings suggest that promoting technology and innovation management and supporting R&D subsidies may reduce the marginal cost of conducting R&D and increase the rate of technology and innovation management and R&D activity and therefore, the total factor productivity growth rate.
The price-dividend ratio is one of the most frequently used financial variables to predict long-horizon stock return. However, the persistency of the price-dividend ratio is found to cause the spuriousness of the stock return prediction regression. The stable relationship between the stock price and the dividend, however, seems to weaken after World War II and to experience structural break. In this paper, we identify a structural change in the cointegrating relationship between the log of the stock price and the log of the dividend. Confirming a structural break in 1962, we subdivide the sample and apply the fully modified estimator to correct for the nonstationarity of the regressor. With the subdivided sample, we exercise the nonparametric bootstrap procedure to derive the empirical distribution of the test statistics and fail to find return predictability in each subsample period.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.