• Title/Summary/Keyword: Coil diameter

Search Result 251, Processing Time 0.025 seconds

On-line Magnetic Resonance Quality Evaluation Sensor

  • Kim, Seong-Min;McCarthy, Michael J.;Chen, Pictiaw;Zion, Boaz
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.314-324
    • /
    • 1996
  • A high speed NMR quality evaluation sensor was designed , constructed and tested . The device consists of an NMR spectrometer coupled to a conveyor system. The conveyor was run at speeds ranging from 0 to 250 mm/s. Spectral of avocado fruits and one-dimensional magnetic resonance images of pickled olives were acquired while the samples were moving on a conveyor belt mounted through a 20Tesla NMR magnet with a 20 mm diameter surface coil and a 150 mm diameter imaging coil respectively. Fro a magnetic resonance spectrum analysis, motion through variations in the magnetic field tends to narrow spectral line width just like using sample rotation in high resolution NMR to narrow spectral line width. Spectrum analysis was used to detect the dry weight of avocado fruits using the ratio oil and water resonance peaks. Good correlations maximum r=0.970@ 50 mm/s and minimum r=0.894@250mm/s ) between oil and water resonance peak ratio and dry weight of avocados were observed at speeds ra ging from0 to 250mm/s. For the application of magnetic resonance imaging (MRI) method, the projections were used to distinguish between pitted and non-pitted olives . Effect of fruit position in the coil was tested and coil degree effects were noticed when projects were generated under dynamic conditions. Various belt speeds (up to 250mm/s) were tested and detection results were compared to static measurements. Higher classification errors were occurred at dynamic conditions compared to errors while olives were at rest.

  • PDF

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF THE MOLAR ANCHORING SPRING(MAS) DURING RETRACTION OF THE MAXILLARY CANINE (상악견치 후방견인시 저항원 조절을 위한 MAS(Molar Anchoring Spring)의 초기 응력분포에 관한 광탄성학적 연구)

  • Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.341-348
    • /
    • 1996
  • The efficiency of maxillary canine retraction by means of sliding mechanics along an 0.016 continuous labial arch and an 0.009 inch in diameter with a lumen of 0.030 inch NiTi closed coil spring was compared with that using the same NiTi closed coil spring and Molar Anchoring Spring(MAS) which was designed by author. MAS was made of .017" X .025" TMA wire and was given 60 degree tip-back bend on the wire close to the molar tube. This study was designed to investigate molar and canine root control during retraction into an extraction site with continuous arch wire system. Two techniques were tested with a continuous arch model embedded in a photoelastic resin. A photoelastic model was employed to visualize the effects of forces applied to canine and molar by two retraction mechanics. With the aid of polarized light, stresses were viewed as colored fringes. The photoelastic overview of the upper right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows. 1. Higher concentration of compression can be seen clearly at the distal curvature of the canine and mesial curvature of the molar and premolar when NiTi closed coil spring was applied only, which means severe anchorage loss of the molar and uncontrolled tipping of the canine. 2. The least level compression was presented at the mesial root area of the molar and premolar, and mesial root area of the canine when NiTi closed coil spring and MAS were used simultaneously. Especially mesial alveolar crest region of the canine was shown moderate level of compression that means MAS can be used as a appliance for anchorage control and prevention of canine extrusion and uncontrolled tipping during canine retraction.

  • PDF

Evaluation of Heat Exchange Rate in Horizontal Slinky and Coil Type Ground Heat Exchangers Considering Pitch Interval (피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Kim, Woo-Jin;Go, Gyu-Hyun;Jeon, Jun-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.55-61
    • /
    • 2014
  • The need of geothermal energy is constantly increasing for economical and environmental utilization. Horizontal ground heat exchangers (GHEs) can reduce installation cost and increase efficiency. There are many kinds of GHEs, and it is known that slinky and spiral coil type GHEs show high thermal performance. Therefore, this paper presents experimental results of heat exchange rates in horizontal slinky and spiral coil type GHEs installed in a steel box whose size is $5m{\times}1m{\times}1m$. Dried Joomunjin standard sand was filled in a steel box, and thermal response tests (TRTs) were conducted for 30 hours to evaluate heat exchange rates by changing different pitch spaces of horizontal slinky and spiral coil type GHEs. As a result, spiral coil type GHE showed 30~40% higher heat exchange rates per pipe length than horizontal slinky type GHEs. Furthermore, long pitch interval (Pitch/Diameter=1) showed 200~250% higher heat exchange rates per pipe length than short pitch interval (Pitch/Diameter=0.2) in both spiral coil and horizontal slinky type GHEs, respectively.

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.119-123
    • /
    • 2011
  • Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Fabrication of Particulates Reinforced Metal Matrix Composites by Electro-Magnetic Stirring and Reheating Process for Thixoforming (전자기식 교반법을 이용한 입자강화형 금속복합재료의 제조 및 Thixoforming을 위한 재가열 공정)

  • 임해정;강충길;조형호
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.494-503
    • /
    • 2000
  • The electro-magnetic stirring and mechanical process were applied to fabricate particulate metal matrix composites(PMMCs) with various particle size. The mechanical test on PMMCs was carried out in order to clarify the effect of 76 heat treatment on tensile behaviors. In order to study the thixoforming of PMMCs, fabricated billet are reheated by using the coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation has been investigated with the calculated solid fraction theory based on a function of matrix alloy and volume fraction of reinforcement.

  • PDF

The Domestic Development of a Superconducting MRI Magnet (초전도 MRI 마그네트 국산화 개발)

  • 배준한;심기덕;고락길;진홍범;조전욱;하동우;오상수;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.121-124
    • /
    • 2001
  • The research results on the superconducting magnet for whole body MRI are presented. The magnet consists of main coil with 6 solenoid coils, shielding coil with 2 solenoid coils and 6 sets of cryogenic shim coil. The ferromagnetic shim assembly is installed on the inside wall of the room temperature bore for shimming inhomogeneous field components generated due to manufacturing tolerances, installation misalignments and external ferromagnetic materials near the magnet. Also, the magnet is enclosed with the horizontal type cryostat with 80cm room temperature bore to keep the magnet under the operating temperature. The magnetic field distributions within the imaging volume were measured by the NMR field mapping system. Through the test, the central field of magnet was 1.5 Tesla and the field homogeneity of 9.3 ppm has been obtained on 40cm DSV(the diameter of spherical volume) and using this magnet, comparatively good images for human body, fruits and water phantoms have been achieved.

  • PDF

Fabrication of Bending Actuator Using Zigzag-type Shape Memory Alloy Springs (지그재그 형태의 형상기억합금 스프링을 이용한 굽힘 액츄에이터의 제작)

  • Lim, An-Su;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2512-2514
    • /
    • 1998
  • The bending actuator using zigzag type shape memory alloy springs has been fabricated and characterized. The small sized actuator with outer diameter of 3.0mm and inner diameter of 2.0mm could be implemented because zigzag type spring has advantages for thin wall type actuator over the coil type spring. The measured characteristics of the fabricated bending actuator show the possibility of practical application to micro active bending catheter.

  • PDF

Development of Prepolarization Coil Current Driver in SQUID Sensor-based Ultra Low-field Magnetic Resonance Apparatuses (SQUID 센서 기반의 극저자장 자기공명 장치를 위한 사전자화코일 전류구동장치 개발)

  • Hwang, S.M.;Kim, K.;Kang, C.S.;Lee, S.J.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • SQUID sensor-based ultra low-field magnetic resonance apparatus with ${\mu}T$-level measurement field requires a strong prepolarization magnetic field ($B_p$) to magnetize its sample and obtain magnetic resonance signal with a high signal-to-noise ratio. This $B_p$ needs to be ramped down very quickly so that it does not interfere with signal acquisition which must take place before the sample magnetization relaxes off. A MOSFET switch-based $B_p$ coil driver has current ramp-down time ($t_{rd}$) that increases with $B_p$ current, which makes it unsuitable for driving high-field $B_p$ coil made of superconducting material. An energy cycling-type current driver has been developed for such a coil. This driver contains a storage capacitor inside a switch in IGBT-diode bridge configuration, which can manipulate how the capacitor is connected between the $B_p$ coil and its current source. The implemented circuit with 1.2 kV-tolerant devices was capable of driving 32 A current into a thick copper-wire solenoid $B_p$ coil with a 182 mm inner diameter, 0.23 H inductance, and 5.4 mT/A magnetic field-to-current ratio. The measured trd was 7.6 ms with a 160 ${\mu}F$ storage capacitor. trd was dependent only on the inductance of the coil and the capacitance of the driver capacitor. This driver is scalable to significantly higher current of superconducting $B_p$ coils without the $t_{rd}$ becoming unacceptably long with higher $B_p$ current.

Optimizing Transmitting Coil of Wireless Power Transmission System with Different Shape Coils (이형코일을 이용한 무선전력전송 시스템 송신 코일 최적화)

  • Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.614-619
    • /
    • 2017
  • In this paper, we optimize the wireless power transmission (WPT) coil, and then compare the EM simulation and measurement using magnetic coupling at 6.78 MHz. As transmission efficiency is affected by various factors such as the shape of the system, the size of the coils, the coil structure is proposed to consist of a helical resonant for transmission and a spiral resonant for reception. The size of the coil and the distance between the coils are determined to minimize the volume problem, and the shape of the coil are confirmed by EM simulation. A WPT system is designed with 860mm diameter top plate and cylindrical structure of column spaced 600mm apart, and the characteristics are simulated and measured. The simulation shows that ${\mid}S_{21}{\mid}$ is -0.53 dB with the efficiency of 88%, and the measurement result is that ${\mid}S_{21}{\mid}$ is -0.71 dB with the efficiency of 85%.