• Title/Summary/Keyword: Coil Design

Search Result 998, Processing Time 0.046 seconds

Coil Design of A Wireless Power Supply of SiC MOSFET Gate-Drivers (SiC MOSFET 게이트 드라이버용 초소형 무선전력 전원 공급 장치의 코일 설계)

  • Roh, Junghyeon;Lee, Jaehong;Kim, Sungmin;Lee, Seung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.271-273
    • /
    • 2020
  • SiC 기반의 전력용 반도체 소자들은 스위칭 속도가 빠르고 높은 차단 전압을 가져 dv/dt가 크다. 중전압 이상에서 게이트 드라이버에 절연된 전원 공급을 하기 위해 소형 변압기가 사용된다. 하지만 변압기의 1, 2 차 권선 사이에 수십 pF 이상의 기생 커패시턴스가 존재하며, 높은 전압을 고속으로 스위칭 하게 될 경우 기생 커패시턴스를 통해 제어부로 공통 모드 전류가 흘러 오작동을 야기할 수 있다. 본 연구에서는 변압기를 대체하여 무선전력전송 코일을 이용한 게이트 드라이버용 절연된 전원공급 장치를 제안한다. 무선전력전송 코일 사이의 거리를 수 mm 이상 이격시켜 코일 사이의 기생 커패시턴스를 1 pF 이하로 줄이고 높은 절연 특성을 가질 수 있다. 무선전력 전송의 공진 토폴로지는 직렬-병렬을 선택했고, 2 MHz에서 높은 효율을 갖도록 I-core 코일을 2.2cm × 1.5cm × 1.7cm으로 제작해 검증했다.

  • PDF

A Study of the Vibration Characteristics of a Haptic Vibrator for Horizontal and Vertical Magnetization (수평 및 수직 착자에 대한 햅틱 진동자의 진동특성에 관한 연구)

  • Ko, Dong Shin;Hur, Deog Jae;Park, Tae Won;Lee, Jai Hyuk;Lee, Sung Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.415-421
    • /
    • 2015
  • This paper describes the study of the design procedure for the step-by-step setup parameters and of the magnetizing method for performance and size reduction in the development of a haptic vibrator. The study of magnetization was accomplished by comparing the electromagnetic force in accordance with the horizontal and the vertical magnetization. The theoretical results indicated that the horizontal magnetization resulted in a better performance. The systematic design of a step-by-step procedure for establishing the design parameters was verified by testing the characteristics of the fabricated prototype product. The vibration response function analysis and electric field analysis were processed by decoupling of the analytical method, and these were determined to be in good agreement with the test results. The design parameters to contributing to the product reliability included the spring height, the welding position, and the coil position. The sensitivity of the electromagnetic field and the performance change were analyzed based on the design parameters. As a result, we proposed a design method to implement a reliability-based, high performance haptic vibrator.

Design and manufacture of HTS current lead for 10kJ SMES (10kJ SMES용 고온초전도 전류리드의 설계 및 제작)

  • Park, Hae-Yong;Kim, Kwang-Min;Kim, Dae-Won;Kim, A-Rong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok;Sohn, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.599_600
    • /
    • 2009
  • In superconducting magnetic energy storage (SMES) systems, the current leads are usually divided into two parts. Normal metals like brass or copper are often used in the first part from the room temperature to the 1st stage of the cryocooler. Their dimensions were decided to minimize the conduction heat penetration and Ohm's heat generation. The second part down to the cryogenic coil is made of high temperature superconductor (HTS). HTS current leads can reduce the conductive heat penetration because they have poor thermal conductivity and generate no Ohm's heat generation. The brass current lead and the HTS current lead were designed and fabricated for application to the 10kJ class SMES system. The HTS current lead is 300A class. The HTS current lead was stacked with 2 HTS layers using the $Bi_2Sr_2Ca_2Cu_3O_x$ (BSCCO)/Ag. In this paper, we introduce the design procedure of the current leads and discuss the test results of the current leads.

  • PDF

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.

Eddy Current Bobbin Probe Design for Steam Generator Tubes in NPPs (원전 증기발생기 전열관 와전류검사 보빈탐촉자 설계)

  • Nam, Min-Woo;Lee, Hee-Jong;Jee, Dong-Hyun;Jung, Jee-Hong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2007
  • The bobbin probe examination is basic and the important method among other ECT techniques for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, such as geometry and operation frequency, and has enormous effects on examination results. In this study, An optimal differential bobbin probe is designed for the steam generator tube inspection in nuclear power plants(NPPs). Based on the test results for electrical and ECT signal characteristics, the prototype bobbin probe satisfies all the criteria.

Design of HF-UHF dual Band Tag Antenna (HF-UHF RFID 이중대역 태그 안테나 설계)

  • Yoon, Nanae;Nam, Havan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • In this paper, a dual band antenna with the operating frequency in HF and UHF band was proposed. The antenna structure consists of three spiral turns coil in the bottom side to generate the HF frequency of 13.56 MHz. In the top of the antenna, an inverted-spiral dipole structure is used to create the UHF frequency of 922 MHz. The dual band antenna was optimized to reduce size with $80mm{\times}40mm{\times}0.8mm$ dimension. The antenna presents the omnidirectional characteristic with high gain. To validate the theoretical design, the antenna was simulated using FR-4 substrate and verified the simulation results.

Design and Electromagnetic Characteristics of Planar Transformer (평면변압기의 설계와 전자기적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yeon;Kim, Jong-Ryung;Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.3
    • /
    • pp.109-116
    • /
    • 2002
  • We designed the flyback planar transformer, which had 8 W capacity, with 70 V input voltage and 8.2 V output voltage for the establishment of design method and the confirmation of application possibility. The numerical value of inductance measured under the switching frequency of 120 kHz was 1650 $\mu$H, which was the inductance efficiency of'85∼87% against theoretical value. The A.C. resistance of primary and secondary coil was 4.2 Ω and 0.25 Ω respectively, On the other hand, the quality factor for each wound numbers showed quite a high value of 158 and 75 respectively. And the Coupling Factor was 0.96∼0.97 under 120 kHz switching frequency. The inductance rapidly increased as the thickness of the core plane increased until it became 1.4 mm but under the thickness more than 1.4 mm, there was no substantial change. Therefore, the critical value of the plane thickness of core was 1.4 mm. And the shape of the output wave of the planar transformer at 70V input voltage was a stable square wave.

Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

  • Chung, Y.D.;Lee, C.Y.;Lee, S.Y.;Lee, T.W.;Kim, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

Design of a 40 channel SQUID system (40채널 SQUID 시스템의 설계)

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Lim, C.M.;Lee, S.K.;Park, Y.K.;Park, J.C.;Lee, D.H.;Shin, J.K.;Ahn, C.B.;Park, M.S.;Hur, Y.;Hong, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.191-192
    • /
    • 1998
  • We report on the design of a low-noise 40 channel SQUID system for biomagnetism. We used low-noise SQUID sensor with the pickup coil integrated on the same wafer as the SQUID. The SQUID electronics were simplified by increasing the voltage output of the SQUID. The SQUID insert was designed to have low thermal load, minimizing the liquid helium loss. The digital signal processing provides versatile analysis tools and the software is based on the object-oriented programming. For the effective localization of the source location, solutions of the inverse problems based on the lead-field and the simulated anneal ins were studied.

  • PDF

PRELIMINARY REPORT: DESIGN AND TEST RESULTS OF KSR-3 ROCKET MAGNETOMETERS

  • Kim, Hyo-Min;Jang, Min-Hwan;Lee, Dong-Hun;Ji, Jong-Hyun;Kim, Sun-Mi;Son, De-Rac;Hwang, Seung-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.317-328
    • /
    • 2000
  • The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for the spacecraft purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute) sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF