• Title/Summary/Keyword: Coil Design

Search Result 998, Processing Time 0.029 seconds

A Study on the Influence of Induction Coil Movement Speed and Frequency on Induction Hardening of SCM440 Steel (SCM440 강의 유도 경화에 미치는 유도코일 이동속도 및 주파수의 영향에 관한 연구)

  • Ki-Woo Nam;Ki-Hang Shin;Byoung-Chul Choi;Gum-Hwa Lee;Jong-Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.813-823
    • /
    • 2023
  • In this study, microstructure, hardening layer hardness, and case depth were evaluated after induction hardening(IH) of base metal specimen(BM) treated with annealing and quenching-tempering specimen(QT) treated with quenching and tempering. The microstructure after IH was significantly influenced by the microstructure before IH and the induction coil heating movement speed, but the effect of the induction frequency was very small. The hardness of the hardened layer at an induction coil heating movement speed of 15 mm/s or less was more influenced by the microstructure before IH than the induction coil travel speed and induction frequency. The induction coil travel speed has the significantly effect on the case depth, the induction frequency has effect and the microstructure before IH has a small effect.

Design of Rogowski coil to improve of current measurement sensitivity (전류측정감도 개선을 위한 로고우스키 코일의 설계)

  • Park, J.N.;Lee, C.;Jang, Y.M.;Kang, S.H.;Lim, K.J.;Na, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.609-612
    • /
    • 2001
  • Rogowski coil is made having no ferromagnetic material in a core. So the coil cannot be driven into saturation. This result in that Rogowski coils may be calibrated at relatively low currents. and used with confidence at very high currents. However the lowest level of current that can be measured is limited by the sensitivity of the voltage measuring instrument and system noise. Therefore. geometrical effects were investigated in order to measure high sensitivity of low level current and the significant source of error was examined as well. In the results, the source of error was associated with coil designs. i.e. shape and uniformity of coil and a geometrical location of current source inside and outside of the Rogowski coil.

  • PDF

Design of Rogowski coil to improve of current measurement sensitivity (전류측정감도 개선을 위한 로고우스키 코일의 설계)

  • Park, J. N.;Lee, C.;Jang, Y. M.;Kang, S. H.;Lim, K. J.;Na, D. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.609-612
    • /
    • 2001
  • Rogowski coil is made having no ferromagnetic material in a core. So the coil cannot be driven into saturation. This result in that Rogowski coils may be calibrated at relatively low currents, and used with confidence at very high currents. However the lowest level of current that can be measured is limited by the sensitivity of the voltage measuring instrument and system noise. Therefore, geometrical effects were investigated in order to measure high sensitivity of low level current and the significant source of error wa examined as well. n the results, the source of error was associated with coil designs, i.e. shape and uniformity of coil and a geometrical location of current source inside and outside of the Rogowski coil.

  • PDF

Extremely high efficiency wireless power transfer system for EV charger (전기자동차 충전을 위한 고효율 무선전력전송 시스템)

  • Moon, SangCheol;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • This paper proposes a high efficiency wireless power transfer system with an asymmetric 4-coil resonator. It presents a theoretical analysis, an optimal design method, and experimental results. In the proposed asymmetric 4-coil system, the primary side consists of a source coil and two transmitter coils which are called intermediate coils, and in the secondary side, a load coil serves as a receiver coil. In the primary side, two intermediate coils boost the apparent coupling coefficient at around the operating frequency. Because of this double boosting effect, the system with an asymmetric 4-coil resonator has a higher efficiency than the conventional symmetric 4-coil system. The prototype operates at 90 kHz ofswitching frequency and has 200 mm of the power transmission distance between the primary side and the secondary side. An AC-DC overall system efficiency of 96.56% has been achieved at 3.3 kW of output power.

  • PDF

Design and Extraction of Control Parameters of a Moving-Coil-Type Linear Actuator for Driving of Linear Reciprocating Motion Control Systems (리니어 왕복운동 제어시스템 구동용 가동코일형 리니어 액츄에이터의 설계제작 및 제어정수 도출)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.241-248
    • /
    • 1999
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loudspeakers to stirling engine driven linear reciprocating alternators, compressors, textile machines etc. The stroke-length may go up to 2m, and the maximum speed is in the range of 5 to 10m/s with oscillating frequency as high as 15 kHz. Therefore, the linear oscillating actuators(LOAs) may be considered as variable speed drivers of precise controller with stoke-length and reversal periods during the reciprocating motion. In this paper, the design, fabrication, experiments, and extraction of control parameters of a moving coil type LOA for driving of linear reciprocating motion control systems, are treated. The actuator consists of the NdFeB permanent magnets with high specific energy as the stator produced magnetic field, a coil-wrapped nonmagnetic hollow rectangular bobbin structure, and an iron core as a pathway for magnetic flux. Actually, the design is accomplished by using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In order to apply as the drivers of a linear motion reciprocating control system, the control parameters and circuit parameters, such as input voltage-stoke, exciting frequency-stoke, coil inductance and so on, are extracted from the analysis and experiments on concerning a fabricating LOA.

  • PDF

Characteristics of the 0.7MJ $\mu$SMES Coil (0.7MJ $\mu$SMES 코일의 특성)

  • 김해종
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.134-137
    • /
    • 1999
  • This paper describes the design, code of a $\mu$SMES device that we developed. The 0.7MJ $\mu$SMES coil was wound with high winding tension of about 14kbf/$mm^{2}$ in order to prevent wire motion from Lorentz force. This coil was charged up to a current of 1820A with a ramping rate of about 10A/s, where a quench occurred. This quench current is sbout 82% fo the coil critical current.

  • PDF

CONSTRUCTION OF MEASURING ROGOWSKI COIL NANO-SEC RISR TIME (Nano-sec rise time을 갖는 Rogowski 코일의 제작)

  • Yi, Yong-Woo;Lee, Choo-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.399-401
    • /
    • 1988
  • This paper describes the experiment and design of Rogowski - wound coil used to measure a pulsed current with pulsewidth on the order of 100nsec in the kiloampere range. Radius of coil is 2.75cm, total number of turns are 26 and cross -sectional area is 1 cm. The coil have 3ns rise time, 0.2nsec transit time and sensitivity is 4v/kA.

  • PDF

Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism (스프링 조작기의 성능 개선을 위한 코일스프링의 최적 설계)

  • Lee, Dae Woo;Sohn, Jeong Hyun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.275-280
    • /
    • 2016
  • In this study, a release test bed is designed to evaluate the dynamic behaviors of a coil spring. From the release tests, the dynamic behaviors of a coil spring are analyzed. A lumped parameter spring model was established for numerical simulation of a spring. The design variables of a coil spring are optimized by using the design of experiments approach. Two-level factorial designs are used for the design optimization, and the primary effects of the design variables are analyzed. Based on the results of the interaction analysis and design sensitivity analysis, the level of the design variables is rearranged. Finally, the mixed-level factorial design is used for the optimum design process. According to the optimum design of the opening spring, the dynamic performance of the spring-operated mechanism increases by 2.90.

Optimal Design considering Magnetic Saturation Characteristic of Current Transformers for the Overcurrent Warning Circuit (과전류 경고 회로용 변류기의 자기포화 특성을 고려한 최적 설계)

  • Kim, Sun-Jong;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.7
    • /
    • pp.781-786
    • /
    • 2015
  • In this paper, we analyzed characteristic of window type current transformer and we performed the optimal design consider to the loss; in order to design the current transformer figured signal of overcurrent warning circuit. The core size of window type current transformer was determined by the secondary coil turns. We analyzed current waveform, which is appeared by the number of coil turns on the core, we made sure the relation of secondary coil turns and load resistance in order to improve the non-sinusoidal wave by the flux saturation of the current transformer core. Additionally, we did improvement of the accuracy and optimal design through the transformation of the inner diameter and the stack length when the outer diameter of core is sustaining.

A Study on Thermo-Hydraulic Analysis for KSTAR(Korea Superconducting Tokamak Advanced Research) Cooling Line System (KSTAR(Korea Superconducting Tokamak Advanced Research) 냉각 시스템에 대한 열해석 연구)

  • Kim, H.W.;Ha, J.S.;Kim, D.S.;Lee, J.S.;Choi, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.296-301
    • /
    • 2003
  • A study on the engineering design and numerical thermo-hydraulic analysis for KSTAR TF coil structure cooling system has been conducted. The numerical analyses have been done to verify the engineering design of cooling using the commercial code, FLUENT and in-house code for calculating helium properties which varies with cooling tube's heat transfer. Through the engineering design process based on the steady heat balance concepts, the circular stainless steel tube with inner diameter of 4 mm for TF coil has been selected as cooling tube. From normal operation mode analysis results, total 28 cooling tubes were finally chosen. Also, three dimensional cool down analysis for TF coil with designed cooling tube was satisfied with next three design criteria. First is cooling work termination within a month, second is maximum temperature difference within 50 K in TF coil structure and third is exit helium pressure above 2 bar. Consequently, these cool down scenario results can afford to adopt as operating scenario data when KSTAR facilities operate.

  • PDF