• Title/Summary/Keyword: Coil Design

Search Result 998, Processing Time 0.035 seconds

3-axis Moving Magnet Type Actuator (가동 자석형 3 축 구동 엑츄에이터)

  • Hur, Young-Jun;Song, Myeong-Gyu;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1033-1036
    • /
    • 2007
  • The optical disc drive has used a high NA objective lens and a shorter wavelength laser diode for high recording density. But high NA and shorter wavelength cause several margins to become short. Focusing and tracking servo has to be more accurate and active tilt compensation mechanism is also needed for coma aberration compensation. In this paper, we proposed 3-axis moving magnet type actuator. For 3-DOF motion, moving coil actuator has to equip 6 wires for supplying 3 independent signals. However, moving magnet type actuator doesn't need to change the configuration of wires because coils are in stator. So, we added tilting mechanism to 2-axis moving magnet actuator which is designed in previous research. Addition of the tilting mechanism cuts down the focusing sensitivity. So, maximization the tilting sensitivity and securing the focusing sensitivity are objectivities of this research. DOE (design of experiments) procedures of electromagnetic circuit are performed for parameter study and the optimization is also performed to maximize the tilt sensitivity. And then the final design is suggested and its performance is verified by FE simulation.

  • PDF

Design, Implementation and Testing of HF transformers for Satellite EPS Applications

  • Zahran, Mohamed
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • The electric power subsystems (EPS) of most remote sensing satellites consist of a solar array as a source of energy, a storage battery, a power management and control (PMC) unit and a charge equalization unit (CEU) for the storage battery. The PMC and CEU use high frequency transformers in their power modules. This paper presents a design, implementation and testing results of a high frequency transformer for the EPS of satellite applications. Two approaches are used in the design process of the transformer based on the pre-determined transformer specifications. The transformer is designed based on an ETD 29 ferrite core. The implemented transformer consists of one center-tapped primary coil with eleven center-tapped secondary coils. The offline calculation results and measured values of R, L for transformer coils are convergence. A test circuit for measuring the transformer parameters like voltage, current and B-H hysteresis was implemented and applied. The test results confirm that the voltage waveforms of both primary and secondary coils were as desired. No overlapping occurred between the control signal and the transformer, which was not saturated during testing even during a short circuit test of the secondary channels. The dynamic B-H loop characteristics of the used transformer cores were measured. The sample test results are given in this paper.

Design and Implementation of integrated drive circuit for a small BLDG Motor (드라이브 내장형 소형 BLDC 모터의 설계와 구현)

  • Choi, J.H.;Lee, J.B.;Rhyu, S.H.;Chung, J.K.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.170-172
    • /
    • 2003
  • Among low power servo applications, classical DC motors are very popular because they are reasonably cheap and easy to control. The main disadvantage is the mechanical collector which has only a limited life period. Also, brush sparking can destroy the rotor coil, generate EMC problems. So permanent magnet brushless do motors and drives are being used increasingly in a wide range of applications. This has been made possible with the advantages of high performance permanent magnets with high coercively and residual magnetic, which make it possible for the PM to have superior power density, torque to inertia ratio and efficiency, when compared to an induction or conventional dc machine. This paper presents the design of a PM brushless dc motor drive simplistically operates as a classical dc motor. The BLDC motor drive system for this paper composes to the power integrated circuits, the one chip device. And several simple semiconductors add to drive system for a motor drive system simplistically operates as a conventional dc motor. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

Electromagnetic Design and Performance Evaluation of an MR Valve (MR 밸브의 전자기적 설계와 성능평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

Improvement of Output Characteristics and Acoustic Noise Characteristics for Single Phase Induction Motor with Concentrated Winding (집중권 방식 단상유도기의 출력 및 소음 특성 개선)

  • Chae, Myong-Gi;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.693-698
    • /
    • 2007
  • In general the distributed winding method is applied for induction motor in order to have the sinusoidal flux distribution. Recently the concentrated winding method is the interested technique so as to lower the material cost portion of copper coil. In the concentrated winding induction motor the harmonic flux and the torque deterioration by it would be occurred. To restrain ill effect of harmonic flux distribution by concentrated winding, the skew of rotor conduction bar is very important design variable. This study is focused on the optimal design of rotor bar's skew and winding turns for concentrated winding induction motor. In this study, the control method of harmonic parasitic torque in concentrated winding induction motor is proposed and validated its practicality through the experiment. As a result of this study, large skew angle which was not conventional in distributed winding was favorable in the concentrated winding induction motor. The concentrated winding induction motor which is designed per the proposed method of this study can be manufactured more cost effectively than conventional distributed winding.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

Elastic Modulus Extraction of Wire Mesh for Vibration Mount Development (방진마운트 개발을 위한 와이어 메쉬 탄성계수 추출)

  • Kim, Tae-Yeon;Shin, Yun-ho;Moon, S.J.;Jung, B.C.;Lee, T.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.806-813
    • /
    • 2016
  • To alleviate the vibration problem or to satisfy the required criteria for manifesting the guaranteed performance of precise equipment, various vibration isolation materials or apparatus, such as viscoelastic material, air and coil spring, have been developed and applied. Among them, a wire mesh material is regarded as one of the good candidate for reducing the vibration in terms of moderate material price, easy shape machining and long life cycle without the property deterioration induced by the aging or environmental effects. In this paper, prior to wire mesh isolator design, the static and dynamic elastic modulus of wire mesh materials are extracted from the experiment by the simple shaped cylindrical specimens and their characteristics for applying to vibration isolator design are examined. The simple shaped specimens were made as considering the design parameters of a wire mesh mount; i.e. the density, wire diameter and wire mesh slope, and the sensitivity analysis were also performed from a view point of the extracted elastic modulus.

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

An Optimum Design of the Tactile Feedback Device using the Electromagnetic Attractive Force by the Probable Flux Paths Method (가정 자로법에 의한 전자기 흡입력의 촉각궤환장치의 최적설계)

  • 이정훈;장건희;최동훈;박종오;이종원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.464-478
    • /
    • 1998
  • In teleoperation, it is important for an operator to feel as if he really were in a distant place. To realize this objective, the various information from a remote site must be presented to the operator. Even though tactile information is very important to efficiently execute a task, it is not yet sufficiently provided for the operator. In this paper, we propose the new mechanism that can provide the more dexterous tactile information to the operator This device utilizing the electromagnetic force is designed to be compact and light enough to be attached to the fingerpad, and designed to be controlled continuously. The magnetic circuit is derived by the probable flux paths method in order to take forces at any given dimension. An optimization technique is also proposed to maximize the tactile force that humans can perceive under the same conditions. The objective function is formulated as maximizing displacements indented on the fingerpad, considering the mechanism of human tactile perception. The optimization formulation is subject to the geometric and rising temperature constraints in the coil. It is demonstrated that, by optimization, the tactile force increases by 24%, compared with that obtained from the initial design.

  • PDF