• Title/Summary/Keyword: Coil Design

Search Result 999, Processing Time 0.032 seconds

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Dependance of hot-zone position on AlN single crystal growth by PVT method (PVT법에 의한 AlN 단결정 성장에서 Hot-Zone 의존성)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • AlN single crystals were grown by the PT (Physical vapor transport) method with position-changable induction coil. And the graphite crucible dimensioned ${\Phi}90{\times}H120$ was used on processing. The temperature was $1950{\sim}2050^{\circ}C$ and ambient pressure was 150~1 Torr. And the hot-zone was changed according to times on growing for result comparison. When hot-zone by coil is located below far enough (> 40 mm) from AlN crystal concentration position, the as-grown crystals physical size is better ($300{\mu}m/hr$) than another condition, but the condition-reproducibility was very poor. However the closer the distance between hot-zone and AlN growing posion, the smaller the size of as-grown crystal and the rarer the generation of the crystal nuclear, but the crystal growing condition is stable for quality. The best condition for both growth rate and quality is gained when the starting position of hot-zone coil is about 20 mm distance from growing position. For the best growth condition, the position of hot-zone is very sensitive factor and the further more the condition of speed of coil shift also must control.

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink (은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계)

  • Lee, Sang-hwa;Park, Hyun-ho;Choi, Eun-ju;Yoon, Sun-hong;Hong, Ic-pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.716-722
    • /
    • 2017
  • In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.

Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition (고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가)

  • Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

Design and Evaluation of An Electromagnetic Driven Actuator for Near-field Optical Recording System (근접장 광기록 시스템용 전자기구동 액추에이터의 설계 및 평가)

  • 김석중;이용훈;이철우;서중언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2732-2741
    • /
    • 2000
  • Combination of magnetic recording technology and optical recording technology such as Near Field Optical Recording is watched recently. In order to accomplish this technology, the development of an electromagnetic driven mm-sized mirror shifting laser beam in track direction have to needed. In Near Field Optical Recording System, shifting laser beam in track direction mean as fine tracking and means as coarse tracking. Therefore in Near Field Optical Recording, 2-stage actuator is composed of servo controller in reading or recording information on disc layer. In our research, through design and simulation process of driven mm-sized mirror, we arrange systematically design process of driven mm-sized mirror having good frequency transfer characteristics. Design and simulation processes included modal analysis of spring, calculation of magnetic moment according to the number of turns and geometric configuration of coil and magnetic circuit analysis meaning that calculation of magnetic flux density in air gap of magnetic circuit. After that we design and make parts of driven mm-sized mirror, assemble and evaluate our electriomagnetic driven mm-sized mirror. we compared design values with actual characteristic values and present solution scheme. Through these processes we performed manufacturing of an electromagnetic driven mm-sized mirror having good frequency-domain characteristics and high sensitivity characteristics.

Extraction of Design Parameters through Electromagnetic and Dynamic Analysis of Slotless Double-side PMLSM system (양측식 영구자석 가동형 슬롯리스 직선 동기전동기의 전자기 특성 및 동특성 해석에 의한 설계정수 도출)

  • Jang, Won-Bum;Lee, Sung-Ho;Jang, Seok-Myeong;You, Dae-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2135-2144
    • /
    • 2007
  • This paper presents system design of the slotless double-side Permanent Magnet Linear Synchronous Machine system (PMLSM) through magnetic field analysis and dynamic modeling. In our analysis, 2-D analytical treatments based on the magnetic vector potential were adopted to predict magnetic field with space harmonics by PM mover magnetization and stator winding current. From these, the design parameters such as inductance, Back-emf, and thrust are estimated. And, the electrical dynamic modeling including synchronous speed is completed by calculation of a DC link voltage in effort to obtain the accurate mechanical power from Space Vector Pulse Width Modulation(SVPWM). Therefore, the system design of PMLSM is performed from estimation of design parameters according to PM size and coil turns in magnetic field and from calculation of a DC link voltage to satisfy base speed and base thrust represented as the maximum output power in dynamic modeling. The estimated values from the analysis are verified by the finite element method and experimental results.

Study on Design Parameters that Affect the Forming Force of the Magnetic Pulse Forming Device (자기 펄스 성형장치의 성형력에 영향을 미치는 설계 파라미터에 관한 연구)

  • Lee, Man Gi;Yi, Hwa Cho;Kim, Jin Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.79-82
    • /
    • 2015
  • The design parameter study about the magnetic pulse forming is performed using finite element analysis with MAXWELL. The first case of design parameters is about the initial charging voltage and the capacitance and the second case of design parameters are about the winding turns and the spacing of electromagnetic coil. The 3D finite element model of electromagnetic forming system is created and the magnetic force is calculated. The effects of design parameters on the magnetic forming force are investigated.

Design and Comparison of Superconducting Magnets with Circular Coil Elements for Magnetic Resonance Imaging (원형무코일로 구성된 MRI용 초전도 자석의 설계와 비교)

  • Kim, Yong-Gwon;Hyun, Jung-Ho;Seo, Jeung-Hoon;Kim, Hyug-Gi;Oh, Chang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.57-62
    • /
    • 2011
  • This paper proposed a method which is the three types of magnet model for improving field inhomogeneity of superconducting magnet. The length of coil wire was compared for the optimized current pattern using minimum power methods and field inhomogeneity under the specific simulation condition in case of same magnet field strength about each magnet type field inhomogeneity. Length of wire and field inhomogeneity were compared under the same condition(18 target points, 20cm DSV). According to the simulation results, the smaller target points can reduce the wire length but it can not improve the field inhomogeneity. Length of wire and low field inhomogeneity can not improve in same time. However, small DSV and reducing target points can overcome the these problem. And to conclude, if it processes shimming as reducing target points in case of magnet model which is open to space, about the size of same imaging region it needs a lot of current values(or the length of wire) and decreases field homogeneity but it is useful to get small ROI.

Minimum-Power Design of Actively-Shielded Transverse Gradient Coils for MRI (MRI용 차폐된 X,Y-경사자계코일의 최소전력설계)

  • Lee, D.R.;Kim, S.K.;Yang, Y.J.;Lee, H.K.;Ahn, C.B.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.307-309
    • /
    • 1996
  • A new design scheme of actively-shielded x,y-gradient coils for Magnetic Resonance Imaging(MRI) is proposed. An actively-shielded x-gradient coil has been designed as an example and the results are presented. In MRI, gradient coils are needed for spatial selection and position coding to obtain the position information of the NMR signal. They are usually switched on and off during imaging and the eddy current induced by the current switching usually degrades the final image quality To reduce or remove this kind of problems, the active shielding has been proposed few years ago. In this paper, a new design scheme for actively-shielded x,y-gradient coils, namely, a minimum-power design scheme using current-loop elements, has been proposed. Its utility in designing MRI gradient coils has been shown by using simulation. The design scheme seems to be useful for actively-shielded transverse gradient coils, even of non-cylindrical or of arbitrary-selected shapes.

  • PDF