• 제목/요약/키워드: Cohesive zone element

검색결과 59건 처리시간 0.02초

응집영역요소를 이용한 균열진전 모사 (Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements)

  • 하상렬
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.519-525
    • /
    • 2009
  • 본 연구에서는 복합재료 적층판에서 균열 생성 및 전파로 이루어지는 계면박리 현상을 모사하기 위하여 응집영역모델을 사용하였다. 응집영역모델을 고려한 유한요소해석을 수행하기 위하여 응집요소를 수식화하였으며, 상용유한요소 프로그램인 Abaqus의 사용자 정의 서브루틴 UEL로 구현하였다. 제안된 응집요소의 타당성과 유효성을 평가하기 위하여 복합재료 적층판의 이중외팔보(double cantilever beam) 시험과 ENF(end notched flexure) 시험결과와 유한요소해석 결과를 비교하였다. 해석 결과는 거시적인 하중-변위 곡선을 비교적 잘 예측하였다. 또한 응집요소를 이용한 유한요소해석시 탄성계수와 응집요소의 크기가 구조물의 하중-변위 곡선에 미치는 영향을 수치적으로 연구하였다. 균열 전파 경로의 격자 의존성을 최소화하고 하중-변위 곡선에 나타나는 지그-재그 현상을 제거하기 위하여 균열 선단에서 충분히 작은 응집요소가 사용되어야 한다.

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

3차원 유한요소법을 이용한 용접시편의 파괴 해석 (Fracture analysis of weld specimen using 3-dimensional finite element method)

  • 양승용;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

응집영역모델을 이용한 정수압 성형 해석시 고무몰드의 변형거동 (Deformation of the Rubber Mold by Using the Cohesive Zone Model Under Cold Isostatic Pressing)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.387-395
    • /
    • 2008
  • Stress distribution and interfacial debonding process at the interface between a rubber mold and a powder compact were analyzed during unloading under cold isostatic pressing. The Cap model proposed by Lee and Kim was used for densification behavior of powder based on the parameters involved in the yield function of general Cap model and volumetric strain evolution. Cohesive elements incorporating a bilinear cohesive zone model were also used to simulate interfacial debonding process. The Cap model and the cohesive zone model were implemented into a finite element program (ABAQUS). Densification behavior of powder was investigated under various interface conditions between a rubber mold and a powder compact during loading. The residual tensile stress at the interface was investigated for rubber molds with various elastic moduli under perfect bonding condition. The variations of the elastic energy density of a rubber mold and the maximum principal stress of a powder compact were calculated for several interfacial strengths at the interface during unloading.

응집 영역 요소를 이용한 고분자 접착 테이프의 박리거동 모사 (Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes Using Cohesive Zone Element)

  • 장진혁;성민창;유웅열
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.203-208
    • /
    • 2016
  • 금속/고분자 샌드위치 복합재는 경량성과 제진, 방음 등의 다기능성의 측면에서 기존의 스틸 강판을 대체할 후보 중 하나로서 연구되고 있다. 금속/고분자 복합재의 활용하기 위해서는 접착력을 바탕으로 한 박리 거동 예측이 매우 중요한 요소이다. 본 연구에서는 응집요소를 사용하여 유한요소 해석을 통해 접착제를 사용한 고분자 테이프의 박리거동 해석을 수행하였다. 응집요소의 특성은 박리시험과 역학 관계로부터 도출한 파괴인성을 통해 정의하였고 이를 해석에 적용하였다. 스틸 강판에서 고분자 테이프를 박리하는 시험을 모사하였고, 해석결과와 시험결과를 비교하여 박리 거동 모사가 가능함을 확인하였다.

응집영역모델을 이용한 다공질 재료의 파괴 거동 연구 (Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models)

  • 최승현;하상렬;김기태
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.552-559
    • /
    • 2009
  • The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I (Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I)

  • 이찬주;이상곤;고대철;김병민
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee;Jang, Youn-Young;Huh, Nam-Su;Shim, Do-Jun;Park, Kyoungsoo
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.974-987
    • /
    • 2021
  • This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석 (Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel)

  • 김준환;신광복;황태경
    • 대한기계학회논문집A
    • /
    • 제38권11호
    • /
    • pp.1265-1272
    • /
    • 2014
  • 본 논문에서는 CZM(Cohesive Zone Model)을 이용하여 돔 분리형 복합재 압력용기 접착 체결부의 점진적 파손 해석에 대한 연구를 수행하였다. 접착 요소(cohesive element)의 물성을 도출하기 위해 모드I, II 그리고 혼합모드에 대한 층간파괴인성들을 시험을 통해 도출하였다. 이때, 모든 시험편은 복합재 압력용기와 동일한 필라멘트 와인딩 제작공정을 통해 제작되었다. 이중 겹치기 이음(double-lap joint) 시험은 접착제의 전단강도와 CZM을 이용한 점진적 파손해석의 신뢰도 검증을 위해 수행하였다. 그 결과, 접착제의 전단강도는 시험으로부터 32MPa을 얻었고, 시험과 해석의 오차는 약 4.4%의 오차가 발생하여 CZM이 접착 체결부의 점진적 파손 거동을 비교적 잘 모사함을 확인하였다. 최종적으로 신뢰성이 검증된 CZM을 복합재 압력용기 접착 체결부에 적용하여 운용하중조건에서의 점진적 파손해석을 수행한 결과, 전체 200mm를 갖는 접착 체결부 길이의 약 5.8%만이 점진적 파손이 발생하는 것으로 나타나 복합재 압력용기의 구조 안전성에는 영향을 주지 않음을 확인하였다.