• Title/Summary/Keyword: Cohesive failures

Search Result 37, Processing Time 0.026 seconds

Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling (응집영역 모델링 기법을 사용한 노치가 있는 적층복합재료의 파괴해석)

  • Woo, Kyeongsik;Cairns, Douglas S.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • In this paper, fracture behavior of laminated composites with notch was studied by cohesive zone modeling approach. The numerical modeling proceeded by first generating 3 dimensional solid element meshes for notched laminated composite coupon configurations. Then cohesive elements representing failure modes of fiber fracture, matrix cracking and delamination were inserted between bulk elements in all regions where the corresponding failures were likely to occur. Next, progressive failure analyses were performed simulating uniaxial tensile tests. The numerical results were compared to those by experiment available in the literature for verification of the analysis approach. Finally, notched laminated composite configurations with selected stacking sequences were analyzed and the failure behavior was carefully examined focusing on the failure initiation and progression and the dominating failure modes.

THE EFFECT OF CYANATE METHACRYLATE ON THE SHEAR BOND STRENGTHS TO DENTIN (Cyanate methacrylate가 상아질 결합강도에 미치는 영향)

  • Kim, Hyang-Kyung;Choi, Kyung-Kyu;Choi, Gi-Woon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.236-247
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of cyanate methacylate on the shear bond strengths to bovine dentin surfaces as a dentin primers. Seven experimental adhesives were made with different mass fraction of Isocyanatoetylme-thacrylate (IEM), 40wt% HEMA (Wako Pure Chemical Industries Osaka, Japan), 0.6% camphoroquinone, 0.4% amine and ethanol as balance dentin bonding agents (0, 2, 4, 6, 8, 10, 12%) were made and applied on the surface of bovine dentin specimens of 7 experimental groups. Shear bond strengths were measured using a universal testing machine (Instro 4466). To identify the ratio and modes of cohesive failures, microscopic examinationn was performed. The ultra-structure of resin tags were observed under scanning electron microscope. The results were as follows ; 1) A higher shear bond strengths (33.62 MPa) in group 8% of Cyanate methacrylate to dentin were found, but there were no statistically significancy between Groups (p > 0.05). 2) The higher ratio of cohesive failures mode in group 2, 6, an 10% could be seen than that in any other groups. 3) A shorter resin tags were observed in all experimental groups. This could be resulted that the preventing from the cyanate methacrylate penetrate into dentin owing to reacting it with dentin collagen. Therefore the resin tags were shorter in lengths. Whether the higher bonding strengths of dentin bonding agents can be affected was not been assured with statistic results. The results indicated that the relation between tensile strengths of the dentin adhesives to bovine dentin and resin tags formed into the dentin could not affected. The main reason of increasing the shear bond strength to bovine dentin in experimental groups could not be assured.

Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements

  • Cho, Jin Hyung;Kim, Sun Jai;Shim, June Sung;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2017
  • PURPOSE. The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS. ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS. For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION. Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated.

THE EFFECTS OF METAL SURFACE TREATMENTS ON THE BONE STRENGTH OF POLYMETHYL METHACRYLATE BONDED REMOVABLE PROSTHESE (가철성 보철물의 금속면 처리방법이 열중합 레진과 금속간의 결합강도에 미치는 영향)

  • Eom, Tae-Wan;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.336-354
    • /
    • 1998
  • Traditionally, many kinds of mechanical bonding techniques were used for bonding resins to the surface of the metal alloys. If there is a seperation between resin and metal junction by stress accumulation and temperature change of oral cavity, the cracks or crazing may occur, accompanied by failure of resin bonding to metal. This study was designed to compare the shear bond strength of the type IV gold alloy and Cr-Co alloy surfaces treated with various methods and thermocycling. Universal Instron (Model 1000) and scanning electron microscope (JEOL, Japan) was used to record the shear bond strength of 5 groups. Forty specimens were made for each group ; group 1 was treated with sandblasting only, group 2 was coated with V-primer after sandblasting, group 3 was coated with Metal primer, group 4 wase coated with MR Bond and group 5 was coated with silane. After treated with various methods, thermocycling was done for half of the each group. The surfaces of failed pattern were observed with SEM. The results were as follows : 1. Shear bond strength of the group 1 was lower than that of another groups in type IV gold alloys and bond strength of the group 1, 2 were lower than that of group 3, 4, 5 in Cr-Co alloys. 2. Shear bond strength of the gold alloy with resin was higher than that of Cr-Co alloy when specimens were coated with V-primer. 3. Shear bond strength of the Co-Cr alloys with resin was higher than that of gold alloys when specimens were coated with Metal primer. 4. The bond strength of all specimens did not decreased significantly after thermocycling. 5. Adhesive failures were found in group 1 and Cr-Co alloy in group 2, but adhesive and cohesive failures were found in another groups.

  • PDF

A study on the shear bond strengths of veneering ceramics to the colored zirconia core (착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kang, Sun-Nyo;Cho, Wook;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.312-319
    • /
    • 2009
  • Statement of problem: Delamination of veneering porcelain from underlying ceramic substructures has been reported for zirconia-ceramic restorations. Colored zirconia cores for esthetics have been reported that their bond strength with veneered porcelain is weaker compared to white zirconia cores. Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the colored zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing the result of this with that of conventional metal ceramic system. Material and methods: A Metal ceramic (MC) system was tested as a control group. The tested systems were Katana zirconia with CZR (ZB) and Katana Zirconia with NobelRondo Press (ZP). Thirty specimens, 10 for each system and control, were fabricated. Specimen disks, 3 mm high and 12 mm diameter, were fabricated with the lost-wax technique (MC) and the CAD-CAM (ZB and ZP). MC and ZB specimens were prepared using opaque and dentin veneering ceramics, veneered, 3 mm high and 2.8 mm in diameter, over the cores. ZP specimens were prepared using heat pressing ingots, 3 mm high and 2.8mm in diameter. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50 mm/min until failure. Mean shear bond strengths (MPa) were analyzed with the One-way ANOVA. After the shear bond test, fracture surfaces were examined by SEM. Results: The mean shear bond strengths (SD) in MPa were MC control 29.14 (2.26); ZB 29.48 (2.30); and ZP 29.51 (2.32). The shear bond strengths of the tested systems were not significantly different (P > .05). All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers. Conclusion: 1. The shear bond strengths of the tested groups were not significantly different from the control group (P >.05). 2. There was no significant different between the layering technique and the heat pressing technique in the veneering methods on the colored zirconia core. 3. All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers.

Prevention of thin film failures for 5.0-inch TFT arrays on plastic substrates

  • Seo, Jong-Hyun;Jeon, Hyung-Il;Nikulin, Ivan;Lee, Woo-Jae;Rho, Soo-Guy;Hong, Wang-Su;Kim, Sang-Il;Hong, Munpyo;Chung, Kyuha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.700-702
    • /
    • 2005
  • A 5.0-inch transmissive type plastic TFT arrays were successfully fabricated on a plastic substrate at the resolution of $400{\times}3{\times}300$ lines (100ppi). All of the TFT processes were carried out below $150^{\circ}C$ on PES plastic films. After thin film deposition using PECVD, thin film failures such as film delamination and cracking often occurred. For successful growth of thin films (about 1um) without their failures, it is necessary to solve the critical problem related to the internal compressive stress (some GPa) leading to delamination at a threshold thickness value of the films. The Griffith's theory explains the failure process by looking at the excess of elastic energy inside the film, which overcomes the cohesive energy between film and substrate. To increase the above mentioned threshold thickness value there are two possibilities: (i) the improvement of the interface adhesion (for example, through surface micro-roughening and/or surface activation), and (ii) the reduction of the internal stress. In this work, reducing a-Si layer film thickness and optimizing a barrier SiNx layer have produced stable CVD films at 150oC, over PES substrates

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

A STUDY ON THE BOND STRENGTH OF REINFORCED INDIRECT COMPOSITE RESINS TO DENIAL ALLOYS (강화형 간접복합레진과 치과용 합금의 결합강도에 관한 연구)

  • Yoon, Dong-Joo;Shin, Sang-Wan;Lim, Ho-Nam;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.620-639
    • /
    • 1999
  • Indirect composite resins are used as an popular effective esthetic material in prosthetic dentistry, often with metallic substructure that provides support for restorations. Recently, new indirect composite resins as a substitute of ceramic have been developed. These resins provide good esthetics, with a wide range of hue and chroma. And the flexural strength of those is in the range of 120-150MPa, Which is higher than that of feldspathic Ceramic, and similar th that of Dicor. Although it has many merits, one of the major clinical problems of composite resins is the bond failure between metal and resin due to insufficient interfacial bond strength. The purpose of this study was to evaluate shear bond strength of the reinforced indirect composite resin to dental alloys. Three different composite resin systems($Artglass^{(R)},\;Sculpture^{(R)},\;Targis^{(R)}$) as test groups and ceramic($VMK\;68^{(R)}$) as control group were bonded to Ni-Cr-Be alloy($Rexillium\;III^{(R)}$) and gold alloy(Deva 4). All specimens were stored at $^37{\circ}C$ distilled water for 24 hours and the half of specimens were thermocycled 2000 times at temperature from $5^{\circ}C\;to\;60^{\circ}C$. The shear bond strengths of reinforced indirect composite resins to dental alloys were measured by using the universal testing machine, and modes of debonding were observed by stereoscope and scanning electron microscope. The results were as follows: 1 The shear bond strengths of reinforced indirect composite resins to dental alloys were approximately half those of ceramic to dental alloys(P<0.01). 2. There was no significant difference between the shear bond strength of several reinforced indirect composite resins to metal. 3. Alloy type did not affect on the shear bond strengths of resin to metal, but the shear bond strengths of ceramic to gold alloys were higher than those of ceramic to Ni-Cr alloys(P<0.05). 4. The shear bond strengths of Artglass and Targil to gold alloys were significantly decreased after thermocycling treatment(P<0.01). 5. Sculpture showed cohesive, adhesive, and mixed failure modes, but Artglass and Targis showed adhesive or mixed failures. And ceramic showed cohesive and mixed failures.

  • PDF

A STUDY ON THE RELATIVE SHEAR BOND STRENGTHS OF SOME ADHESIVE RESTORATIVE MATERIALS TO PRIMARY ENAMEL AND DENTIN (수종 접착성 수복재의 유치 법랑질과 상아질에 대한 상대적 접착력의 비교연구)

  • Kim, Seung-Mee;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.237-245
    • /
    • 2000
  • For the purpose of comparing the bond strengths of some tooth adhesive restoration materials on primary enamel and dentin, 4 kinds (7 brands) of restorative materials including a composite resin (Z 100), a conventional glass ionomer cement (Chem-Flex), 2 brands of resin-modified glass ionomer cements (Fuji II LC-I, Vitremer), and 3 brands of compomers(Dyract AP, F2000, Compoglass) were investigated using UTM for measuring the shear bond strengths. Additionally the failure modes were examined by histologically observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strengths of Z 100 to the primary enamel were higher than those of other experimental materials except Fuji II LC-I, which showed significantly higher bond strength than Chem-Flex or Vitremer (P<0.05). 2. The shear bond strengths of Z 100 to the primary dentin were higher than those of other experimental materials except Dyract AP and Fuji II LC-I, both of which showed significantly higher shear strength than Chem-Flex or Vitremer (P<0.05). 3. The shear bond strengths of all restorative materials except Dyract AP showed relatively higher values to enamel surface than to dentin surface. In Dyract AP, the reverse was true significantly. 4. All materials examined showed cohesive failures except some Chem-Flex and Vitremer, which showed adhesive failures.

  • PDF

A comparison of the shear bond strength between porcelain repair systems and fractured surface of porcelain-fused-to-metal restorations (도재파절 양상에 따른 수종의 도재 수복용 레진의 결합력에 관한 실험적 연구)

  • Choi, Jeung Won;Han, Dong Hoo;Jeong, Chang Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 1990
  • Although dental porcelain demonstrates lasting esthetic results, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. This study investigated the in vitro shear strength of three porcelain repair systems according to aspects of the porcelain fractures. The purpose of this study was to evaluate the shear bond strength of three porcelain repair systems(All-bond, Clearfil, Scotchprime) according to fractured surface of porcelain - fused - to - metal restorations. For this study specimens were divided into five groups : group 1 represented fracture occurred at body porcelain layer, group 2 represented fracture occurred at opaque porcelain layer, group 3 represented fracture including 1/3 of metal exposure, group 4 represented fracture including 2/3 of metal exposure, and group 5 represented all metal surface was exposed. Specimens were stored in double deionized water(24Hr, $37^{\circ}C$) and thermocycling was performed(24Hr, 1080cycles), and subjected to a shear force parallel to the repair resin and porcelain interface by use of an University Testing Machine. The results of this study were obtained as follows : 1. In group 1 and 2, bond strength was relatively high, and bond strength showing reducing tendency as exposure of metal was increased. 2. In group 1, bond strength was relatively high, and no significant differences in porcelain repair system. 3. In group 2, 3 and 4, All-bond and Clearfil provided significantly higher bond strength than scotchprime. 4. In group 5, bond strength was the lowest among all groups and especially in case if Scotchprime. 5. Cohesive failure was observed in group 1 and 2, adhesive failure was observed in group 5, and cohesive / adhesive failures were observed in group 3 and 4.

  • PDF