• Title/Summary/Keyword: Cohesive cracks

Search Result 36, Processing Time 0.018 seconds

Evaluation of Indentation Fracture Toughens in Brittle Materials Based on FEA Solutions (유한요소해에 기초한 취성재료의 압입파괴인성평가)

  • Hyun, Hong Chul;Lee, Jin Heang;Felix, Rickhey;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1503-1512
    • /
    • 2013
  • In this study, we proposed an indentation evaluation method for fracture toughness using cohesive finite element simulations. First, we examined the effect of material properties (yield strain, Poisson's ratio, and elastic modulus) on crack size during Vickers indentation and then generated a regression formula that explains the relations among fracture toughness, indentation load, and crack size. We also proposed another indentation formula for fracture toughness evaluation using the contact size a and E/H (H: hardness). Finally, we examined the relation between the crack size and the indenter shapes. Based on this, we can generate from the formula obtained using the Vickers indenter a formula for an indenter of different shapes. Using the proposed method, fracture toughness is directly estimated from indentation data.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

An Extended Meshfree Method without the Blending Region (혼합영역이 없는 확장무요소법)

  • Zi, Goang-Seup;Rabczuk, Timon;Kim, Ji-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.507-512
    • /
    • 2007
  • A new type of extended element-free Galerkin method (XFEM) is proposed on this paper. The blending region which was inevitable in the extended finite element method and the extended meshfree method is removed in this method. For this end, two different techniques are developed. The first one is the modification of the domain of influence so that the crack tip is always placed on the edge of a domain of influence. The second method is the use of the Lagrange multiplier. The crack is virtually extended beyond the actual crack tip. The virtual extension was forced close by the Lagrange multiplier. The first method can be applied to two dimensional problems only Lagrange multiplier method can be used in both two and three dimensions.

  • PDF

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

THE EFFECTS OF METAL SURFACE TREATMENTS ON THE BONE STRENGTH OF POLYMETHYL METHACRYLATE BONDED REMOVABLE PROSTHESE (가철성 보철물의 금속면 처리방법이 열중합 레진과 금속간의 결합강도에 미치는 영향)

  • Eom, Tae-Wan;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.2
    • /
    • pp.336-354
    • /
    • 1998
  • Traditionally, many kinds of mechanical bonding techniques were used for bonding resins to the surface of the metal alloys. If there is a seperation between resin and metal junction by stress accumulation and temperature change of oral cavity, the cracks or crazing may occur, accompanied by failure of resin bonding to metal. This study was designed to compare the shear bond strength of the type IV gold alloy and Cr-Co alloy surfaces treated with various methods and thermocycling. Universal Instron (Model 1000) and scanning electron microscope (JEOL, Japan) was used to record the shear bond strength of 5 groups. Forty specimens were made for each group ; group 1 was treated with sandblasting only, group 2 was coated with V-primer after sandblasting, group 3 was coated with Metal primer, group 4 wase coated with MR Bond and group 5 was coated with silane. After treated with various methods, thermocycling was done for half of the each group. The surfaces of failed pattern were observed with SEM. The results were as follows : 1. Shear bond strength of the group 1 was lower than that of another groups in type IV gold alloys and bond strength of the group 1, 2 were lower than that of group 3, 4, 5 in Cr-Co alloys. 2. Shear bond strength of the gold alloy with resin was higher than that of Cr-Co alloy when specimens were coated with V-primer. 3. Shear bond strength of the Co-Cr alloys with resin was higher than that of gold alloys when specimens were coated with Metal primer. 4. The bond strength of all specimens did not decreased significantly after thermocycling. 5. Adhesive failures were found in group 1 and Cr-Co alloy in group 2, but adhesive and cohesive failures were found in another groups.

  • PDF

Evaluation of Failure Modes and Adhesion of DLC Films by Scratch Test (스크래치 시험을 통한 DLC 박막 파손과 밀착 특성 평가)

  • Kim, Ju Hee;Park, Chanhyung;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.127-133
    • /
    • 2017
  • In order to characterize the adhesive properties and failure mechanisms of diamond-like carbon (DLC) films of two different thicknesses (130 nm and $1.2{\mu}m$), deposited by plasma-enhanced chemical vapor deposition on a Si substrate, scratch testing with a micro-indenter ($12.5{\mu}m$ tip radius) was performed under a linearly increasing load. These scratch tests were conducted under the same test conditions for both films. The critical load of each film was estimated from the scratch test results, based on a sharp increase in the coefficient of friction and a clear distinction of failure modes. The critical load was the basis for evaluating the adhesion strength of the films, and the $1.2{\mu}m-thick$ DLC film had superior adhesion strength. For better understanding of the failure modes, the following analyses were conducted: friction behavior and scratch tracks analysis using scanning electron microscopy, energy-dispersive spectroscopy, and 3-D profilometry. The scratch test results showed that failure modes were related to the thickness of the films. The 130 nm-thick DLC film underwent cohesive failure modes (cracks and chipping) before reaching to a gross failure stage. On the other hand, the thicker DLC film ($1.2{\mu}m-thick$) did not exhibit micro cracks before a sudden gross failure of the film together with the evidence of cracking and chipping of the Si substrate.