• Title/Summary/Keyword: Cohesive Soil

Search Result 188, Processing Time 0.022 seconds

Uplift response of multi-plate helical anchors in cohesive soil

  • Demir, Ahmet;Ok, Bahadir
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.615-630
    • /
    • 2015
  • The use of helical anchors has been extensively beyond their traditional use in the electrical power industry in recent years. They are commonly used in more traditional civil engineering infrastructure applications so that the advantages of rapid installation and immediate loading capability. The majority of the research has been directed toward the tensile uplift behaviour of single anchors (only one plate) by far. However, anchors commonly have more than one plate. Moreover, no thorough numerical and experimental analyses have been performed to determine the ultimate pullout loads of multi-plate anchors. The understanding of behavior of these anchors is unsatisfactory and the existing design methods have shown to be largely inappropriate and inadequate for a framework adopted by engineers. So, a better understanding of helical anchor behavior will lead to increased confidence in design, a wider acceptance as a foundation alternative, and more economic and safer designs. The main aim of this research is to use numerical modeling techniques to better understand multi-plate helical anchor foundation behavior in soft clay soils. Experimental and numerical investigations into the uplift capacity of helical anchor in soft clay have been conducted in this study. A total of 6 laboratory tests were carried out using helical anchor plate with a diameter of 0.05 m. The results of physical and computational studies investigating the uplift response of helical anchors in soft clay show that maximum resistances depend on anchor embedment ratio and anchor spacing ratio S/D. Agreement between uplift capacities from laboratory tests and finite element modelling using PLAXIS is excellent for anchors up to embedment ratios of 6.

Numerical Analysis of Hydrograph Determination for Cohesive Soil Levee (조립토 하천제방의 수위파형결정에 관한 수치해석적 연구)

  • Kim, Jin-Man;Kim, Ji-Sung;Oh, Eun-Ho;Cho, Won-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.81-92
    • /
    • 2014
  • The integrity evaluation of river levee includes slope stability evaluation of riverside land and protected low-land, and safety of piping with respect to critical gradient and critical velocity based on related regulations, such as Design Criteria Rivers Commentary (2009), Structural Design Criteria Based Commentary (2009). The design hydro-graph is the most important design input factor for the integrity evaluation; it can be inaccurate due to the absence of its decision methods suggested by the national level. The authors in this paper evaluated numerical analytic levee integrity for piping and slope stability by changing each design hydro-graph, including rising ordinary water level, lasting flood water level, falling water level, and flood frequency for Mun-san-jae on Nak-dong River. Finally, the authors suggested that the levee integrity of piping and slope stability are very sensitive to the changes of increasing time of ordinary water level by 57 hours and lasting time of the flood water level by 53 hours, respectively, for Mun-san-jae.

A Study on the Consolidation Behavior of Cohesive Soils Improved by Penetrated and Partly Penetrated Sand Compaction Piles (관통 및 미관통 SCP 개량지반의 압밀거동 비교연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.706-713
    • /
    • 2004
  • This paper introduced an alternative method called USCP (Unpenetrated Sand Compaction Pile). In USCP, the toe of the sand pile does not reach to the lower supporting layer. Hence it is possible to reduce the amount of sand required. However, the degree of improvement could not be the same as SCP. Effective soil improvement, nevertheless, might be possible by combining both methods. In this paper, an improved method that cross over both SCP and USCP was discussed. And in order to verify applicability to a clay layer, consolidation behaviors with different conditions were analyzed and compared using FEM(Finite Element Method) based on the elasto-viscosity theory. From the results, it is concluded for the characteristic of settlement of USCP that the lower degree of replacement and the smaller ratio of penetration($H_d/H$), the larger is the settlement of the lower part of the clay layer comparing to the layer with no improvement. It is also concluded that the ratios of allotment of stress (m) calculated from the final settlements with 30% of degree of replacement are $1.8{\sim}3.3$ for $H_d/H=lOO%,\;1.8{\sim}4.0\;for\;H_d/H=75%,\;and\;1.8{\sim}3.8\;for\;H_d/H=50%$. Besides, the ratio of allotment of stress decreased as the degree of replacement decreased.

  • PDF

A Suggestion of Formulae to Calculate Sectional Tractive Force on the Slope of Cohesive River Bank and its Application (점착성 제방사면의 구간별 소류력 산정식 제안 및 적용)

  • Han, Man-Shin;Choi, Gye-Woon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.583-596
    • /
    • 2012
  • The revetment is a installed structure on the slope of river bank to protect against flowing. Through the design standards of domestic and overseas, the maximum tractive force is calculated and applied to the average concept on the slope of river bank. In the case of calculating the method of permissible tractive force on the slope of river bank, there is a need to consider soil sliding. In this study, suggested the tractive force formulae by section of adhesion that have 0 < ${\Phi}$ < $90^{\circ}$ slope of river bank and installed an open channel of length of 20 m and 2 m wide for calculating permissible tractive force and hydraulic model experimented with changing discharge. According to the results, the calculated permissible tractive force of section on the slope is the largest due to the significant effects of surface roughness of different revetment materials. In addition, the permissible tractive force increased in the presence of vegetation but has no the effect by vegetation density.

A Study on the Liquefaction Behavior of Soil in Jangbogo Station (남극 장보고기지 현장시료의 액상화거동 특성 연구)

  • Park, Keunbo;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In this study, in order to take advantage of samples collected in the Jangbogo station, and to grasp the liquefaction resistance characteristics of the dynamic load was performed cyclic triaxial test. Also, through the comparison with the existing literature. The test results, for the relationship between number of cycles for the same cyclic shear stress ratio and the cyclic shear stress ratio to produce an axial strain of 5%, in all samples, the cyclic shear stress ratio to liquefaction for the specimen, which has been liquefied, was increased, whereas number of cycles were reduced. The cyclic shear stress ratio of samples first decrease up to the fine content of about 10%. After this strength level, there is a little increase in cyclic shear stress ratio with increasing fine content. In addition, the cyclic shear stress ratio between cohesive strength, mean particle size, and friction angle decrease but some time later, there was a tendency that cyclic shear stress ratio is a little increased.

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Analysis on the Safety of Structure and Economics of Replacement Method Using Rock Debris in the Soft Ground - Case Study of Miho Stream Crossing Road in Cheongju City (연약지반 암버럭 치환공법의 구조물 안정성과 경제성 분석 - 청주시 미호천 횡단도로를 대상으로)

  • Heo, Kang Kug;Park, Hyung Keun;Ahn, Byung Chul;Min, Byeong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.705-713
    • /
    • 2016
  • For the soft ground construction, the factors not considered in the design stage occurs in the construction stage so that they cause the increase of the construction cost due to the structural stability and the design change. The subject of the study is the construction section of the industrial complex access road made in the Ochang region of Chungcheongbuk-do. The study is concerned with selecting the soft ground handling method such as the replacement method using rock debris and the surcharge reflecting the service load as the soft ground handling measure and analyzing the effect of reducing the construction cost with the stability of structures and the reduction of the construction period. The soft ground in the study section consists of sandy and cohesive soil and is 2.4m to 5.5m deep. It is distributed unevenly between the 1.5m to 5.9m stratums under the ground surface. Settlement is not serious, but the future uneven settlement and difference are expected so that the future settlement behavior is estimated by analyzing the site measurement results after the soft ground treatment. Moreover, in consideration of the regional characteristics and economic efficiency, soil with good quality is replaced with rock debris as the replacement material so that 29% of the construction cost is reduced due to the increase of stability and the reduction of duration. If the estimation of the dispersion of the pore water pressure within the dam body and the change of the underground water level and the relation of the actually measured soft ground with consolidation is studied further on the basis of the study, it is expected that the behavior of the soft ground will be correctly estimated in various site conditions.

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils

  • Park, Tae-Woong;Kim, Hyeong-Joo;Tanvir, Mohammad Taimur;Lee, Jang-Baek;Moon, Sung-Gil
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.99-105
    • /
    • 2018
  • Soils are generally classified as fine-grained or coarse-grained depending on the percentage content of the primary constituents. In reality, soils are actually made up of mixed and composite constituents. Soils primarily classified as fine-grained, still consists of a range of coarse particles as secondary constituents in between 0% to 50%. A laboratory scale model test was conducted to investigate the influence of coarse particles on the physical (e.g., density, water content, and void ratio) and mechanical (e.g., quick undrained shear strength) properties of primarily classified fine-grained cohesive soils. Pure kaolinite clay and sand-mixed kaolinite soil (e.g., sand content: 10%, 20%, and 30%) having various water contents (60%, 65%, and 70%) were preconsolidated at different stress levels (0, 13, 17.5, 22 kPa). The quick undrained shear strength properties were determined using the conventional Static Cone Penetration Test (SCPT) method and the new Fall Cone Test (FCT) method. The corresponding void ratios and densities with respect to the quick undrained shear strength were also observed. Correlations of the physical properties and quick undrained shear strengths derived from the SCPT and FCT were also established. Comparison of results showed a significant relationship between the two methods. From the results of FCT and SCPT, there is a decreasing trend of quick undrained shear strength, strength increase ratio ($S_u/P_o$), and void ratio (e) as the sand content is increased. The quick undrained shear strength generally decreases with increased water content. For the same water content, increasing the sand content resulted to a decrease in quick undrained shear strength due to reduced adhesion, and also, resulted to an increase in density. Similarly, it is observed that the change in density is distinctively noticeable at sand content greater than 20%. However, for sand content lower than 10%, there is minimal change in density with respect to water content. In general, the results showed a decrease in quick undrained shear strength for soils with higher amounts of sand content. Therefore, as the soil adhesion is reduced, the cone penetration resistances of the FCT and SCPT reflects internal friction and density of sand in the total shear strength.