• Title/Summary/Keyword: Coflow

Search Result 99, Processing Time 0.022 seconds

Helieum-dilution Effect of Coflow Air on Self-excitation in Laminar Coflow Jet Flames (층류 동축류 제트에서 공기측 헬륨 희석이 화염진동에 미치는 영향)

  • Lee, Won June;Park, Jeong;Kwon, Oh Boong;Baek, Se Hyun;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.51-59
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate the helium-dilution effect of coflow air on self-excitation. For various helium mole fractions and jet velocities, two types of self-excitation were observed: buoyancy-driven self-excitation and Lewis-number-induced self-excitation(here after called Le-ISE) coupled with buoyancy-driven one. The difference between buoyancy-driven and Le-ISE is clarified by using the Mie-scattering visualization as well as exploring the different features. The mechanism of Le-ISE is proposed. When the system Damk$\ddot{o}$hler number was lowered, Le-ISE is shown to be launched. Le-ISE is closely related to heat loss, in that it can be launched in even methane jet flame (Lewis number less than unity) with helium-diluted coflow air. Particularly, Le-ISE becomes significant as the Damk$\ddot{o}$hler number decreases and heat-loss becomes significant.

A Study on Self-excitations in Laminar Coflow Jet Flames (층류 동축류 제트화염에서의 화염진동에 관한 실험적 연구)

  • Yoon, Sung Hwan;Park, Jeong;Yun, Jin Han;Keel, San In;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.83-85
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate the effects of adding $N_2$, $CO_2$ and He to coflowing air-side in self-excitations. Differences in the behaviors between buoyancy-driven and diffusive-thermal self-excitations with similar frequency range are explored and discussed in laminar coflow jet flames.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.15-20
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating of coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow and Coflow Jet Flames (비예혼합 대향류 및 동축 제트화염에서 산소부화에 따른 NOx 생성특성)

  • Yoo, Byung-Hun;Hwang, Chul-Hong;Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.169-174
    • /
    • 2004
  • The NOx emission characteristics with oxygen enrichment in nonpremixed counterflow and coflow jet flame of $CH_4$ fuel have been investigated numerically. A small amount of nitrogen is included in oxygen-enriched combustion, in order to consider the inevitable $N_2$ contamination by air infiltration. The results show that the initial increase of NO with increasing oxygen enrichment is due to increasing temperature and residence time, while its subsequent decrease above 75% oxygen is due to decreasing the consumption rate of nitrogen. When oxygen addition exceeds 30%, Thermal NO gradually becomes the dominant production pathway and Prompt NO becomes negative pathway for net NO production rate. It is also seen that Thermal NO plays an important role in NO reduction when strain rate increase in oxygen-enriched combustion. Finally, the results of EINOx with oxygen enrichment in coflow jet flame show the similar profile with those of conterflow flame. It is confirmed that, with leakage of 1% nitrogen in the oxidizer stream, the corresponding EINOx is eight times of that emitted from regular $CH_4$/Air flame.

  • PDF

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation (동축류 제트에서 초기 온도 변화에 따른 메탄 난류 부상화염 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2372-2377
    • /
    • 2007
  • Characteristics of turbulent lifted flames in coflow jets with the varying initial temperature have recently been investigated about only propane case diluted by nitrogen. The investigation has firstly improved a premixed flame model and a large scale mixing model among competing theories on the stabilization mechanism of turbulent flame to be suitable for a high temperature condition. In this research, about methane with good availability to apply for a practical combustor as clean fuel, its characteristics of turbulent nonpremixed flame have been studied experimentally. The results have shown an effectiveness of the premixed flame model and the large scale mixing model considered initial temperature variation. Additionally, considering the axial distance where the mean fuel concentration falls below the stoichiometric level along the center line of the jet according to diluting nitrogen, the premixed flame model have more accurately been improved.

  • PDF

A study on Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 층류 동축류 제트화염에서의 화염진동에 관한 실험적 연구)

  • Lee, Won June;Park, Jeong;Kwon, Oh Boong;Yun, Jin Han;Keel, Sang In;Kim, Tae Hyung;Kim, Young Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.19-22
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate effects of adding Helium to coflowing air-side in self-excitation. The Differences between buoyancy-driven and diffusive-thermal self-excitations with the same order of O(1.0 Hz) in self-excitation are explored and discussed in laminar coflow jet flames.

  • PDF

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

A Study on Structures and NOx Formation Characteristics in Coflow and Counterflow Diffusion Flamelet (분류 및 대향류 확산 소화염의 구조 및 NOx 생성특성 비교 검토)

  • Oh, C.B.;Kim, J.S.;Lee, C.E.;Lee, K.M.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1998
  • Flame structures and NOx formation characteristics in the flame lets of coflow and counterflow diffusion flame are numerically studied. Calculations were carried out twice with the $C_2-Full$ and $C_2-Thermal$ Mechanism for each flame. Mixture fractions and scalar dissipation rates are used as the parameters to compare the flame let structures and NOx formation characteristics quantitatively. It was found that there is a similarity in flame temperature and stable species profiles except radical profiles between two flamelets. And there are some differences in NOx concentration and production rates. These results imply that the flow effects must be considered in calculations for NOx formation of turbulent flames using Laminar Flamelet Model.

  • PDF