• Title/Summary/Keyword: Coercivity($H_C$)

Search Result 176, Processing Time 0.025 seconds

Magnetization Switching of MTJs with CoFeSiB/Ru/CoFeSiB Free Layers (CoFeSiB/Ru/CoFeSiB 자유층을 갖는 자기터널 접합의 스위칭 자기장)

  • Lee, S.Y.;Lee, S.W.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.124-127
    • /
    • 2007
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous CoFeSiB layers, were investigated. The CoFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with an emphasis given on understanding the effect of the amorphous free layer on the switching characteristics of the MTJs. CoFeSiB has a lower saturation magnetization ($M_s\;:\;560\;emu/cm^3$) and a higher anisotropy constant ($K_u\;:\;2800\;erg/cm^3$) than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003\;erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the Si/$SiO_2$/Ta 45/Ru 9.5/IrMn 10/CoFe 7/$AlO_x$/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) MTJs structure, it was found that the size dependence of the switching field originated in the lower $J_{ex}$ using the experimental and simulation results. The CoFeSiB synthetic antiferromagnet structures were proved to be beneficial for the switching characteristics such as reducing the coercivity ($H_c$) and increasing the sensitivity in micrometer size, even in submicrometer sized elements.

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Magnetic & Crystallographic Properties of Patterned Media Fabricated by Nanoimprint Lithography and Co-Pt Electroplating (나노임프린트 패터닝과 자성박막도금을 이용하여 제작한 패턴드미디어용 자기패턴의 자기적 및 결정구조특성에 관한 연구)

  • Lee, B.K.;Lee, D.H.;Lee, M.B.;Kim, H.S.;Cho, E.H.;Sohn, J.S.;Lee, C.H.;Jeong, G.H.;Suh, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.49-53
    • /
    • 2008
  • Magnetic and crystallographic properties of patterned media fabricated by nanoimprint lithography and Co-Pt electroplating were studied. Thin films of Ru(20 nm)/Ta(5 nm)/$SiO_2$(100 nm) were deposited on Si(100) wafer and then 25 nm hole pattern was fabricated by nanoimprint lithography on substrate. The electroplated Co-Pt nano-dots have the diameter of 35 nm and the height of 27 nm. Magnetic dot patterns of Co-Pt alloy were created using electroplated Co-Pt alloy and then their properties were measured by MFM, SQUID, SEM, TEM and AFM. We observed single domain with perendicular anisotropy for each dot and achieved optimum coercivity of 2900 Oe. These results mean that patterned media fabricated by nanoimprint lithography and electroplating have good properties in view of extending superparamagnetic limit while satisfying the writability requirements with the present write heads.

Magnetization Process in Vortex-imprinted Ni80Fe20/Ir20Mn80 Square Elements

  • Xu, H.;Kolthammer, J.;Rudge, J.;Girgis, E.;Choi, B.C.;Hong, Y.K.;Abo, G.;Speliotis, Th.;Niarchos, D.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • The vortex-driven magnetization process of micron-sized, exchange-coupled square elements with composition of $Ni_{80}Fe_{20}$ (12 nm)/$Ir_{20}Mn_{80}$ (5 nm) is investigated. The exchange-bias is introduced by field-cooling through the blocking temperature (TB) of the system, whereby Landau-shaped vortex states of the $Ni_{80}Fe_{20}$ layer are imprinted into the $Ir_{20}Mn_{80}$. In the case of zero-field cooling, the exchange-coupling at the ferromagnetic/antiferromagnetic interface significantly enhances the vortex stability by increasing the nucleation and annihilation fields, while reducing coercivity and remanence. For the field-cooled elements, the hysteresis loops are shifted along the cooling field axis. The loop shift is attributed to the imprinting of displaced vortex state of $Ni_{80}Fe_{20}$ into $Ir_{20}Mn_{80}$, which leads to asymmetric effective local pinning fields at the interface. The asymmetry of the hysteresis loop and the strength of the exchange-bias field can be tuned by varying the strength of cooling field. Micromagnetic modeling reproduces the experimentally observed vortex-driven magnetization process if the local pinning fields induced by exchange-coupling of the ferromagnetic and antiferromagnetic layers are taken into account.

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Characteristics of Magnetic Tunnel Junctions Comprising Ferromagnetic Amorphous NiFeSiB Layers (강자성 비정질 NiFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, S.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.279-282
    • /
    • 2006
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic NiFeSiB free layers, were investigated. The NiFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with the emphasis being given to obtaining an understanding of the effect of the amorphous free layer on the switching characteristics of the MTJs. $Ni_{16}Fe_{62}Si_{8}B_{14}$ has a lower saturation magnetization ($M_{s}:\;800\;emu/cm^{3}$) than $Co_{90}Fe_{10}$ and a higher anisotropy constant ($K_{u}:\;2700\;erg/cm^{3}$) than $Ni_{80}Fe_{20}$. The $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nanometers)$structure was found to be beneficial for the switching characteristics of the MTJ, leading to a reduction in the coercivity ($H_{c}$) and an increase in the sensitivity resulted from its lower saturation magnetization and higher uniaxial anisotropy. Furthermore, by inserting a very thin CoFe layer at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were improved more with the increase of NiFeSiB layer thickness up to 11 nm.

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying (기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.245-251
    • /
    • 2015
  • We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

Effect of Cobalt Substitution on the Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (Cobalt 치환된 칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Kim, Ic-Seob;Son, Soo-Hwan;Song, So-Yeon;Hahn, Jin-Woo;Choi, Kang-Ryong
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.182-186
    • /
    • 2010
  • Effect of cobalt substitution on the sintering behavior and magnetic properties of a NiZnCu ferrite was studied. $Ni_{0.36-x}Co_xZn_{0.44}Cu_{0.22}Fe_{1.98}O_4(0{\leq}x{\leq}0.04)$ ferrite was fabricated by a solid stat reaction method. It was proposed and experimentally verified that $Co^{2+}$ substituted NiZnCu ferrite was effective on improving the quality factor and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The ferrite was sintered without sintering aids, at $880{\sim}920^{\circ}C$, for 2 h and the initial permeability, quality factor, density, shrinkage, saturation magnetization, and coercivity were also measured. The quality factor (Q) was increased linearly up to x = 0.01 and decreased rapidly over x = 0.01. As the cobalt content increased, the initial permeability and density of the ferrites decreases. The initial permeability of toroidal sample for $Ni_{0.35}Co_{0.01}Zn_{0.44}Cu_{0.22}Fe_{1.98}O_4$ ferrites sintered at $900^{\circ}C$ was 130 at 1 MHz and quality factor was 230.

Bias Voltage Dependence of Magnetic Tunnel Junctions Comprising Double Barriers and CoFe/NiFeSiB/CoFe Free Layer (CoFe/NiFeSiB/CoFe 자유층을 갖는 이중장벽 자기터널접합의 바이어스전압 의존특성)

  • Lee, S.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.120-123
    • /
    • 2007
  • The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/$AlO_x$/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an $Ni_{16}Fe_{62}Si_8B_{14}$ 7 nm, $Co_{90}Fe_{10}$ (fcc) 7 nm, or CoFe $t_1$/NiFeSiB $t_2$/CoFe $t_1$ layer in which the thicknesses $t_1$ and $t_2$ are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of $86\;k{\Omega}{\mu}m^2$, a coercivity ($H_c$) of 11 Oe, and an interlayer coupling field ($H_i$) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of $68\;k{\Omega}{\mu}m^2$, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic $N{\acute{e}}el$ coupling.

Crystall ographic and Magnetic Properties of Ultrafine $CoFe_{1.9}Bi_{0.1}O_4$ Grown by Using a Sol-Gel Method (Sol-gel법에 의한 초미세 분말 $CoFe_{1.9}Bi_{0.1}O_4$의 결정학적 및 자기적 성질 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.177-183
    • /
    • 1999
  • Ultrafine $CoFe_{1.9}Bi_{0.1}O_4$ particles were fabricated by using a sol-gel method and their magnetic and structural properties were investigated with an x-ray diffractometer (XRD), a vibrating sample magnetometer (VSM), and a M$\"{o}$ssbauer spectrometer. The result of x-ray diffraction and M$\"{o}$ssbauer spectroscopy showed that the powders fired at and above 523 K had only cubic spinel structures. M$\"{o}$ssbauer spectra measurements showed that the powders annealed at 523,723 and 823 K possessed ferrimagnetic nature and paramagnetic nature due to superparamagnetism, simultaneously at room temperature and the powders annealed at and above 923 K behaved ferrimagnetically. In the case of the powder annealed at 923 K, the lattice constant was $a_0=8.398$\pm$0.005{\AA}$ and the hyperfine fields were $H_{hf}(A)=479kOe,\; H_{hf}(B)=502kOe$. The isomer shifts indicate that the iron ions are ferric at tetrahedral[A] and octahedral sites [B], respectively. The magnetization as a function of annealing temperature increased as increasing annealing temperature. The largest coercivity values were $H_C=1368\;Oe$ AT 923 K annealing temperature. In the case of the powder annealed at 1123 K, the magnetization value was $M_S=75\;emu/g$ and this value was similler to that of $CoFe_2O_4$.Fe_2O_4$.

  • PDF